scholarly journals Investigating the Relative Gas and Small Dust Grain Surface Heights in Protoplanetary Disks

2021 ◽  
Vol 913 (2) ◽  
pp. 138
Author(s):  
Evan A. Rich ◽  
Richard Teague ◽  
John D. Monnier ◽  
Claire L. Davies ◽  
Arthur Bosman ◽  
...  
2015 ◽  
Vol 11 (A29A) ◽  
pp. 317-318
Author(s):  
A. C. A. Boogert

AbstractIces play a key role in the formation of simple and complex molecules in dense molecular clouds and in the envelopes and protoplanetary disks surrounding young stars. Some fraction of the interstellar ices may become building blocks of comets, and thus be delivered to the early Earth. Laboratory simulations have proven to be crucial in the derivation of ice abundances, in quantifying reaction rates on cold grain surfaces, in determining the thermal and energetic processing history of the ices, and in understanding the interaction between the ices and the underlying refractory grain surfaces. In this invited topical paper I will review possible ways forward in improving our knowledge of the composition of the ices, as many signatures in the interstellar spectra are still poorly identified. I will also emphasize the observed importance of thermal processing of the ices (crystallization, segregation), which likely affects the chemistry after the initial dominance of grain surface reactions. Continued laboratory work is warranted in view of the upcoming observational data from, for example, the James Webb Space Telescope (JWST), which is ideally suited for ices studies. For an exhaustive review on this topic I refer to Boogert, Gerakines & Whittet (2015).


2019 ◽  
Vol 626 ◽  
pp. A96 ◽  
Author(s):  
U. Lebreuilly ◽  
B. Commerçon ◽  
G. Laibe

Context. Small dust grains are essential ingredients of star, disk and planet formation. Aims. We present an Eulerian numerical approach to study small dust grain dynamics in the context of star and protoplanetary disk formation. It is designed for finite volume codes. We use it to investigate dust dynamics during the protostellar collapse. Methods. We present a method to solve the monofluid equations of gas and dust mixtures with several dust species in the diffusion approximation implemented in the adaptive-mesh-refinement code RAMSES. It uses a finite volume second-order Godunov method with a predictor-corrector MUSCL scheme to estimate the fluxes between the grid cells. Results. We benchmark our method against six distinct tests, DUSTYADVECT, DUSTYDIFFUSE, DUSTYSHOCK, DUSTYWAVE, SETTLING, and DUSTYCOLLAPSE. We show that the scheme is second-order accurate in space on uniform grids and intermediate between second- and first-order on non-uniform grids. We apply our method on various DUSTYCOLLAPSE simulations of 1 M⊙ cores composed of gas and dust. Conclusions. We developed an efficient approach to treat gas and dust dynamics in the diffusion regime on grid-based codes. The canonical tests were successfully passed. In the context of protostellar collapse, we show that dust is less coupled to the gas in the outer regions of the collapse where grains larger than ≃100 μm fall significantly faster than the gas.


2013 ◽  
Vol 79 (6) ◽  
pp. 1117-1121 ◽  
Author(s):  
A. A. ABID ◽  
S. ALI ◽  
R. MUHAMMAD

AbstractDust charging processes involving the collection of electrons and positive/negative ions in a non-equilibrium dusty plasma are revisited by employing the power-law kappa (κ)-distribution function. In this context, the current balance equation is solved to obtain dust grain surface potential in the presence of negative ions. Numerically, it is found that plasma parameters, such as the κ spectral index, the negative ion-to-electron temperature ratio (γ), the negative–positive ion number density ratio (α), and the negative ion streaming speed (U0) significantly modify the dust grain potential profiles. In particular, for large kappa values, the dust grain surface potential reduces to the Maxwellian case, and at lower kappa values the magnitude of the negative dust surface potential increases. An increase in γ and U0 leads to the enhancement of the magnitude of the dust grain surface potential, while α leads to an opposite effect. The relevance of present results to low-temperature laboratory plasmas is discussed.


2018 ◽  
Vol 609 ◽  
pp. A50 ◽  
Author(s):  
C. P. Dullemond ◽  
A. B. T. Penzlin

Protoplanetary disks often appear as multiple concentric rings in dust continuum emission maps and scattered light images. These features are often associated with possible young planets in these disks. Many non-planetary explanations have also been suggested, including snow lines, dead zones and secular gravitational instabilities in the dust. In this paper we suggest another potential origin. The presence of copious amounts of dust tends to strongly reduce the conductivity of the gas, thereby inhibiting the magneto-rotational instability, and thus reducing the turbulence in the disk. From viscous disk theory it is known that a disk tends to increase its surface density in regions where the viscosity (i.e. turbulence) is low. Local maxima in the gas pressure tend to attract dust through radial drift, increasing the dust content even more. We have investigated mathematically if this could potentially lead to a feedback loop in which a perturbation in the dust surface density could perturb the gas surface density, leading to increased dust drift and thus amplification of the dust perturbation and, as a consequence, the gas perturbation. We find that this is indeed possible, even for moderately small dust grain sizes, which drift less efficiently, but which are more likely to affect the gas ionization degree. We speculate that this instability could be triggered by the small dust population initially, and when the local pressure maxima are strong enough, the larger dust grains get trapped and lead to the familiar ring-like shapes. We also discuss the many uncertainties and limitations of this model.


2020 ◽  
Vol 495 (2) ◽  
pp. 1650-1665 ◽  
Author(s):  
M Van de Sande ◽  
C Walsh ◽  
T Danilovich

ABSTRACT Asymptotic giant branch (AGB) stars are, together with supernovae, the main contributors of stellar dust to the interstellar medium (ISM). Dust grains formed by AGB stars are thought to be large. However, as dust nucleation and growth within their outflows are still not understood, the dust-grain size distribution (GSD) is unknown. This is an important uncertainty regarding our knowledge of the chemical and physical history of interstellar dust, as AGB dust forms ${\sim} 70{{\ \rm per\ cent}}$ of the starting point of its evolution. We expand on our chemical kinetics model, which uniquely includes a comprehensive dust–gas chemistry. The GSD is now allowed to deviate from the commonly assumed canonical Mathis, Rumpl & Nordsieck distribution. We find that the specific GSD can significantly influence the dust–gas chemistry within the outflow. Our results show that the level of depletion of gas-phase species depends on the average grain surface area of the GSD. Gas-phase abundance profiles and their possible depletions can be retrieved from observations of molecular emission lines when using a range of transitions. Because of degeneracies within the prescription of GSD, specific parameters cannot be retrieved, only (a lower limit to) the average grain surface area. None the less, this can discriminate between dust composed of predominantly large or small grains. We show that when combined with other observables such as the spectral energy distribution and polarized light, depletion levels from molecular gas-phase abundance profiles can constrain the elusive GSD of the dust delivered to the ISM by AGB outflows.


2019 ◽  
Vol 631 ◽  
pp. A1 ◽  
Author(s):  
Eduard I. Vorobyov ◽  
Vardan G. Elbakyan

Aims. Spatial distribution and growth of dust in a clumpy protoplanetary disk subject to vigorous gravitational instability and fragmentation is studied numerically with sub-au resolution using the FEOSAD code. Methods. Hydrodynamics equations describing the evolution of self-gravitating and viscous protoplanetary disks in the thin-disk limit were modified to include a dust component consisting of two parts: sub-micron-sized dust and grown dust with a variable maximum radius. The conversion of small to grown dust, dust growth, friction of dust with gas, and dust self-gravity were also considered. Results. We found that the disk appearance is notably time-variable with spiral arms, dusty rings, and clumps, constantly forming, evolving, and decaying. As a consequence, the total dust-to-gas mass ratio is highly non-homogeneous throughout the disk extent, showing order-of-magnitude local deviations from the canonical 1:100 value. Gravitationally bound clumps formed through gravitational fragmentation have a velocity pattern that deviates notably from the Keplerian rotation. Small dust is efficiently converted into grown dust in the clump interiors, reaching a maximum radius of several decimeters. Concurrently, grown dust drifts towards the clump center forming a massive compact central condensation (70–100 M⊕). We argue that protoplanets may form in the interiors of inward-migrating clumps before they disperse through the action of tidal torques. We foresee the formation of protoplanets at orbital distances of several tens of au with initial masses of gas and dust in the protoplanetary seed in the (0.25–1.6) MJup and (1.0–5.5) M⊕ limits, respectively. The final masses of gas and dust in the protoplanets may however be much higher due to accretion from surrounding massive metal-rich disks/envelopes. Conclusions. Dusty rings formed through tidal dispersal of inward-migrating clumps may have a connection to ring-like structures found in youngest and massive protoplanetary disks. Numerical disk models with a dust component that can follow the evolution of gravitationally bound clumps through their collapse phase to the formation of protoplanets are needed to make firm conclusions on the characteristics of planets forming through gravitational fragmentation.


Sign in / Sign up

Export Citation Format

Share Document