scholarly journals Super-fast Rotation in the OMC 2/FIR 6b Jet

2021 ◽  
Vol 916 (1) ◽  
pp. 23
Author(s):  
Yuko Matsushita ◽  
Satoko Takahashi ◽  
Shun Ishii ◽  
Kohji Tomisaka ◽  
Paul T. P. Ho ◽  
...  
Keyword(s):  
Author(s):  
J. Navaza ◽  
P. M. Alzari

AbstractWe describe the philosophy of the MR method as implemented in the AMoRe package. Fast rotation and translation functions are first used to obtain a meaningful sampling of solution space, whose elements are subsequently assessed by using more robust criteria. The introduction of fast and accurate algorithms for screening a large number of possible solutions opened the way to automation, thus bringing MR methods to the realm of high-throughput structure determination. Selected examples are discussed to illustrate specific aspects of the method.


2007 ◽  
Vol 60 (1) ◽  
pp. 6 ◽  
Author(s):  
Simon Schrödle ◽  
Gary Annat ◽  
Douglas R. MacFarlane ◽  
Maria Forsyth ◽  
Richard Buchner ◽  
...  

A study of the room-temperature ionic liquid N-methyl-N-ethylpyrrolidinium dicyanamide by dielectric relaxation spectroscopy over the frequency range 0.2 GHz ≤ ν ≤ 89 GHz has revealed that, in addition to the already known lower frequency processes, there is a broad featureless dielectric loss at higher frequencies. The latter is probably due to the translational (oscillatory) motions of the dipolar ions of the IL relative to each other, with additional contributions from their fast rotation.


2010 ◽  
Vol 6 (S272) ◽  
pp. 56-61
Author(s):  
Jose H. Groh

AbstractWhile theoretical studies have long suggested a fast-rotating nature of Luminous Blue Variables (LBVs), observational confirmation of fast rotation was not detected until recently. Here I discuss the diagnostics that have allowed us to constrain the rotational velocity of LBVs: broadening of spectral lines and latitude-dependent variations of the wind density structure. While rotational broadening can be directly detected using high-resolution spectroscopy, long-baseline near-infrared interferometry is needed to directly measure the shape of the latitude-dependent photosphere that forms in a fast-rotating star. In addition, complex 2-D radiative transfer models need to be employed if one's goal is to constrain rotational velocities of LBVs. Here I illustrate how the above methods were able to constrain the rotational velocities of the LBVs AG Carinae, HR Carinae, and Eta Carinae.


2018 ◽  
Vol 860 ◽  
pp. 739-766 ◽  
Author(s):  
Rémi Bourguet

The flow-induced vibrations of an elastically mounted circular cylinder, free to oscillate in an arbitrary direction and forced to rotate about its axis, are examined via two- and three-dimensional simulations, at a Reynolds number equal to 100, based on the body diameter and inflow velocity. The behaviour of the flow–structure system is investigated over the entire range of vibration directions, defined by the angle $\unicode[STIX]{x1D703}$ between the direction of the current and the direction of motion, a wide range of values of the reduced velocity $U^{\star }$ (inverse of the oscillator natural frequency) and three values of the rotation rate (ratio between the cylinder surface and inflow velocities), $\unicode[STIX]{x1D6FC}\in \{0,1,3\}$, in order to cover the reference non-rotating cylinder case, as well as typical slow and fast rotation cases. The oscillations of the non-rotating cylinder ($\unicode[STIX]{x1D6FC}=0$) develop under wake-body synchronization or lock-in, and their amplitude exhibits a bell-shaped evolution, typical of vortex-induced vibrations (VIV), as a function of $U^{\star }$. When $\unicode[STIX]{x1D703}$ is increased from $0^{\circ }$ to $90^{\circ }$ (or decreased from $180^{\circ }$ to $90^{\circ }$), the bell-shaped curve tends to monotonically increase in width and magnitude. For all angles, the flow past the non-rotating body is two-dimensional with formation of two counter-rotating spanwise vortices per cycle. The behaviour of the system remains globally the same for $\unicode[STIX]{x1D6FC}=1$. The principal effects of the slow rotation are a slight amplification of the VIV-like responses and widening of the vibration windows, as well as a limited asymmetry of the responses and forces about the symmetrical configuration $\unicode[STIX]{x1D703}=90^{\circ }$. The impact of the fast rotation ($\unicode[STIX]{x1D6FC}=3$) is more pronounced: VIV-like responses persist over a range of $\unicode[STIX]{x1D703}$ but, outside this range, the system is found to undergo a transition towards galloping-like oscillations characterised by amplitudes growing unboundedly with $U^{\star }$. A quasi-steady modelling of fluid forcing predicts the emergence of galloping-like responses as $\unicode[STIX]{x1D703}$ is varied, which suggests that they could be mainly driven by the mean flow. It, however, appears that flow unsteadiness and body motion remain synchronised in this vibration regime where a variety of multi-vortex wake patterns are uncovered. The interaction with flow dynamics results in deviations from the quasi-steady prediction. The successive steps in the evolution of the vibration amplitude versus $U^{\star }$, linked to wake pattern switch, are not captured by the quasi-steady approach. The flow past the rapidly-rotating, vibrating cylinder becomes three-dimensional over an interval of $\unicode[STIX]{x1D703}$ including the in-line oscillation configuration, with only a minor effect on the system behaviour.


2010 ◽  
Vol 6 (S272) ◽  
pp. 547-548
Author(s):  
Thierry Semaan ◽  
Christophe Martayan ◽  
Yves Frémat ◽  
Anne-Marie Hubert ◽  
Juan Gutiérrez Soto ◽  
...  

AbstractFirst we investigate the spectral and photometric properties (colours, magnitudes) of a sample of faint Be stars observed in the first exoplanet fields of CoRoT (IR1, LRA1 and LRC1). We determine the fundamental parameters by fitting ESO-FLAMES/GIRAFFE spectra with synthetic models taking account for non-LTE effects. After that we correct these parameters from fast rotation effects. We also study the location of each star in the (logL vs logT) HR diagram. Second we start to analyse the CoRoT light curves to investigate further the possible correlation between the pulsating properties and the fundamental parameters of the stars.


2019 ◽  
Vol 28 (8) ◽  
pp. 085020 ◽  
Author(s):  
E S Dzlieva ◽  
L G D’yachkov ◽  
L A Novikov ◽  
S I Pavlov ◽  
V Yu Karasev

Sign in / Sign up

Export Citation Format

Share Document