scholarly journals Limits on Polarized Dust Spectral Index Variations for CMB Foreground Analysis

2021 ◽  
Vol 921 (2) ◽  
pp. 175
Author(s):  
Keisuke Osumi ◽  
Janet L. Weiland ◽  
Graeme E. Addison ◽  
Charles L. Bennett

Abstract Using Planck polarization data, we search for and constrain spatial variations of the polarized dust foreground for cosmic microwave background (CMB) observations, specifically in its spectral index, β d . Failure to account for such variations will cause errors in the foreground cleaning that propagate into errors on cosmological parameter recovery from the cleaned CMB map. It is unclear how robust prior studies of the Planck data that constrained β d variations are due to challenges with noise modeling, residual systematics, and priors. To clarify constraints on β d and its variation, we employ two pixel space analyses of the polarized dust foreground at >3.°7 scales on ≈60% of the sky at high Galactic latitudes. A template fitting method, which measures β d over three regions of ≈20% of the sky, does not find significant deviations from a uniform β d = 1.55, consistent with prior Planck determinations. An additional analysis in these regions, based on multifrequency fits to a dust and CMB model per pixel, puts limits on σ β d , the Gaussian spatial variation in β d . The data support σ β d up to 0.45 at the highest latitudes, 0.30 at midlatitudes, and 0.15 at low latitudes. We also demonstrate that care must be taken when interpreting the current Planck constraints, β d maps, and noise simulations. Due to residual systematics and low dust signal-to-noise ratios at high latitudes, forecasts for ongoing and future missions should include the possibility of large values of σ β d as estimated in this paper, based on current polarization data.

2016 ◽  
Vol 25 (03) ◽  
pp. 1650029
Author(s):  
Tadeusz Wibig ◽  
Arnold W. Wolfendale

We have updated our analysis of the 9-year WMAP data using the collection of polarization maps looking for the presence of additional evidence for a finite ‘cosmic ray (CR) foreground’ for the cosmic microwave background (CMB). We have given special attention to high Galactic latitudes, where the recent BICEP2 findings were reported although very recent Planck data claims that dust is prevalent, thus nullifying the BICEP2 results. The method of examining the correlation with the observed gamma ray flux proposed in our earlier papers and applied to the polarization data shows that the foreground related to CRs is still observed even at high Galactic latitudes and conclusions about gravitational waves are not yet secure. Theory has it that there is important information about inflationary gravitational waves in the fine structure of the CMB polarization properties (polarization vector and angle) and it is necessary to examine further the conclusions that can be gained from studies of the CMB maps, in view of the disturbing foreground effects.


2018 ◽  
Vol 617 ◽  
pp. A90 ◽  
Author(s):  
Hao Liu

Context. Currently, detection of the primordial gravitational waves using the B-mode of cosmic microwave background (CMB) is primarily limited by our knowledge of the polarized microwave foreground emissions. Improvements of the foreground analysis are therefore necessary. As we revealed in an earlier paper, the E-mode and B-mode of the polarized foreground have noticeably different properties, both in morphology and frequency spectrum, suggesting that they arise from different physicalprocesses, and need to be studied separately. Aims. I study the polarized emission from Galactic loops, especially Loop I, and mainly focus on the following questions: Does the polarized loop emission contribute predominantly to the E-mode or B-mode? In which frequency bands and in which sky regions can the polarized loop emission be identified? Methods. Based on a well known result concerning the magnetic field alignment in supernova explosions, a theoretical expectation is established that the loop polarizations should be predominantly E-mode. In particular, the expected polarization angles of Loop I are compared with those from the real microwave band data of WMAP and Planck. Results and conclusions. The comparison between model and data shows remarkable consistency between the data and our expectations at all bands and for a large area of the sky. This result suggests that the polarized emission of Galactic Loop I is a major polarized component in all microwave bands from 23 to 353 GHz, and a considerable part of the polarized foreground likely originates from a local bubble associated with Loop I, instead of the far more distant Galactic emission. This result also provides a possible way to explain the E-to-B excess problem by contribution of the loops. Finally, this work may also provide the first geometrical evidence that the Earth was hit by a supernova explosion.


2020 ◽  
Vol 499 (3) ◽  
pp. 3563-3570
Author(s):  
Márcio O’Dwyer ◽  
Craig J Copi ◽  
Johanna M Nagy ◽  
C Barth Netterfield ◽  
John Ruhl ◽  
...  

ABSTRACT Cosmic microwave background (CMB) full-sky temperature data show a hemispherical asymmetry in power nearly aligned with the Ecliptic, with the Northern hemisphere displaying an anomalously low variance, while the Southern hemisphere appears consistent with expectations from the best-fitting theory, Lambda Cold Dark Matter (ΛCDM). The low signal-to-noise ratio in current polarization data prevents a similar comparison. Polarization realizations constrained by temperature data show that in ΛCDM the lack of variance is not expected to be present in polarization data. Therefore, a natural way of testing whether the temperature result is a fluke is to measure the variance of CMB polarization components. In anticipation of future CMB experiments that will allow for high-precision large-scale polarization measurements, we study how the variance of polarization depends on ΛCDM-parameter uncertainties by forecasting polarization maps with Planck’s Markov chain Monte Carlo chains. We show that polarization variance is sensitive to present uncertainties in cosmological parameters, mainly due to current poor constraints on the reionization optical depth τ, which drives variance at low multipoles. We demonstrate how the improvement in the τ measurement seen between Planck’s two latest data releases results in a tighter constraint on polarization variance expectations. Finally, we consider even smaller uncertainties on τ and how more precise measurements of τ can drive the expectation for polarization variance in a hemisphere close to that of the cosmic-variance-limited distribution.


Author(s):  
Chris Longden

Recent analyses of cosmic microwave background surveys have revealed hints that there may be a non-trivial running of the running of the spectral index. If future experiments were to confirm these hints, it would prove a powerful discriminator of inflationary models, ruling out simple single field models. We discuss how isocurvature perturbations in multi-field models can be invoked to generate large runnings in a non-standard hierarchy, and find that a minimal model capable of practically realising this would be a two-field model with a non-canonical kinetic structure. We also consider alternative scenarios such as variable speed of light models and canonical quantum gravity effects and their implications for runnings of the spectral index.


1999 ◽  
Vol 183 ◽  
pp. 104-104
Author(s):  
Kin-Wang Ng

While the temperature anisotropy of the cosmic microwave background is proved to be a promising tool for probing the early Universe, the CMB polarization is another important clue for extracting more cosmic information. We give a full analysis of the auto- and cross-correlations between the CMB Stokes parameters. In particular, we derive the windowing function for an antenna with Gaussian response in polarization experiment, and construct correlation function estimators corrected for instrumental noise. They are applied to calculate the signal to noise ratios for future MAP and Planck anisotropy and polarization measurements.


2014 ◽  
Vol 23 (08) ◽  
pp. 1450070 ◽  
Author(s):  
Phongpichit Channuie

In light of BICEP2, we re-examine single field inflationary models in which the inflation is a composite state stemming from various four-dimensional strongly coupled theories. We study in the Einstein frame a set of cosmological parameters, the primordial spectral index ns and tensor-to-scalar ratio r, predicted by such models. We confront the predicted results with the joint Planck data, and with the recent BICEP2 data. We constrain the number of e-foldings for composite models of inflation in order to obtain a successful inflation. We find that the minimal composite inflationary model is fully consistent with the Planck data. However it is in tension with the recent BICEP2 data. The observables predicted by the glueball inflationary model can be consistent with both Planck and BICEP2 contours if a suitable number of e-foldings are chosen. Surprisingly, the super Yang–Mills inflationary prediction is significantly consistent with the Planck and BICEP2 observations.


2018 ◽  
Vol 27 (08) ◽  
pp. 1850087 ◽  
Author(s):  
Abdul Jawad ◽  
Shahid Chaudhary

Warm generalized Chaplygin gas inflation is being studied by assuming power-law plateau and inverse symmetric potentials with standard scalar field model. We consider strong dissipative regime with generalized dissipative coefficient and extract the various inflationary parameters such as scalar power spectrum, spectral index, tensor-to-scalar ratio and running of spectral index. It is found that both inflationary potentials favor the strong dissipative regime. Also, we construct the [Formula: see text]–[Formula: see text] (running of spectral index versus spectral index) and [Formula: see text]–[Formula: see text] (tensor-to-scalar ratio versus spectral index) planes and found that the trajectories of these planes favor WMAP 7 [Formula: see text] WMAP 9 and latest Planck data.


2006 ◽  
Vol 84 (6-7) ◽  
pp. 447-452 ◽  
Author(s):  
James M Cline

I describe a dynamical mechanism for solving the fine-tuning problem of brane-antibrane inflation. By inflating with stacks of branes and antibranes, the branes can naturally be trapped at a metastable minimum of the potential. As branes tunnel out of this minimum, the shape of the potential changes to make the minimum shallower. Eventually the minimum disappears and the remaining branes roll slowly because the potential is nearly flat. I show that even with a small number of branes, there is a good chance of getting enough inflation. Running of the spectral index is correlated with the tilt in such a way as to provide a test of the model by future cosmic microwave background experiments.PACS Nos.: 11.25.Wx, 98.80.Cq


Author(s):  
Yuto Minami ◽  
Hiroki Ochi ◽  
Kiyotomo Ichiki ◽  
Nobuhiko Katayama ◽  
Eiichiro Komatsu ◽  
...  

Abstract We show that the cosmic birefringence and miscalibrated polarization angles can be determined simultaneously by cosmic microwave background (CMB) experiments using the cross-correlation between $E$- and $B$-mode polarization data. This is possible because the polarization angles of the CMB are rotated by both the cosmic birefringence and miscalibration effects, whereas those of the Galactic foreground emission are rotated only by the latter. Our method does not require prior knowledge of the $E$- and $B$-mode power spectra of the foreground emission, but uses only the knowledge of the CMB polarization spectra. Specifically, we relate the observed $EB$ correlation to the difference between the observed$E$- and $B$-mode spectra in the sky, and use different multipole dependences of the CMB (given by theory) and foreground spectra (given by data) to derive the likelihood for the miscalibration angle $\alpha$ and the birefringence angle $\beta$. We show that a future satellite mission similar to LiteBIRD can determine $\beta$ with a precision of 10 arcmin.


2005 ◽  
Vol 216 ◽  
pp. 28-34
Author(s):  
S. L. Bridle ◽  
A. M. Lewis ◽  
J. Weller ◽  
G. Efstathiou

We reconstruct the shape of the primordial power spectrum from the latest cosmic microwave background data, including the new results from the Wilkinson Microwave Anisotropy Probe (WMAP), and large scale structure data from the two degree field galaxy redshift survey (2dFGRS). We discuss two parameterizations taking into account the uncertainties in four cosmological parameters. First we parameterize the initial spectrum by a tilt and a running spectral index, finding marginal evidence for a running spectral index only if the first three WMAP multipoles (ℓ = 2, 3, 4) are included in the analysis. Secondly, to investigate further the low CMB large scale power, we modify the conventional power-law spectrum by introducing a scale above which there is no power. We find a preferred position of the cut at kc ∼ 3 × 10--4 Mpc--1 although kc = 0 (no cut) is not ruled out.


Sign in / Sign up

Export Citation Format

Share Document