scholarly journals HST/WFC3 Grism Observations of z ∼ 1 Clusters: Evidence for Rapid Outside-in Environmental Quenching from Spatially Resolved Hα Maps

2021 ◽  
Vol 923 (2) ◽  
pp. 222
Author(s):  
Jasleen Matharu ◽  
Adam Muzzin ◽  
Gabriel B. Brammer ◽  
Erica J. Nelson ◽  
Matthew W. Auger ◽  
...  

Abstract We present and publicly release (www.gclasshst.com) the first spatially resolved Hα maps of star-forming cluster galaxies at z ∼ 1, made possible with the Wide Field Camera 3 (WFC3) G141 grism on the Hubble Space Telescope (HST). Using a similar but updated method to 3D-HST in the field environment, we stack the Hα maps in bins of stellar mass, measure the half-light radius of the Hα distribution, and compare it to the stellar continuum. The ratio of the Hα to stellar continuum half-light radius, R [ H α / C ] = R eff , H α R eff , Cont , is smaller in the clusters by (6 ± 9)%, but statistically consistent within 1σ uncertainties. A negligible difference in R[Hα/C] with environment is surprising, given the higher quenched fractions in the clusters relative to the field. We postulate that the combination of high quenched fractions and no change in R[Hα/C] with environment can be reconciled if environmental quenching proceeds rapidly. We investigate this hypothesis by performing similar analysis on the spectroscopically confirmed, recently quenched cluster galaxies. 87% have Hα detections, with star formation rates 8 ± 1 times lower than star-forming cluster galaxies of similar stellar mass. Importantly, these galaxies have an R[Hα/C] that is (81 ± 8)% smaller than coeval star-forming field galaxies at fixed stellar mass. This suggests the environmental quenching process occurred outside-in. We conclude that disk truncation due to ram pressure stripping is occurring in cluster galaxies at z ∼ 1, but more rapidly and/or efficiently than in z ≲ 0.5 clusters, such that the effects on R[Hα/C] become observable just after the cluster galaxy has recently quenched.

2018 ◽  
Vol 618 ◽  
pp. A140 ◽  
Author(s):  
Remco F. J. van der Burg ◽  
Sean McGee ◽  
Hervé Aussel ◽  
Håkon Dahle ◽  
Monique Arnaud ◽  
...  

We study the abundance of star-forming and quiescent galaxies in a sample of 21 clusters at 0.5 <  z <  0.7, detected with the Planck satellite. Thanks to the large volume probed by Planck, these systems are extremely massive, and provide an excellent laboratory to study any environmental effects on their galaxies’ properties. We measure the cluster galaxy stellar mass function (SMF), which is a fundamental observable to study and constrain the formation and evolution of galaxies. Our measurements are based on homogeneous and deep multi-band photometry spanning from the u- to the Ks-band for each cluster and are supported by spectroscopic data from different programs. The galaxy population is separated into quiescent and star-forming galaxies based on their rest-frame U−V and V−J colours. The SMF is compared to that of field galaxies at the same redshifts using data from the COSMOS/UltraVISTA survey. We find that the shape of the SMF of star-forming galaxies does not depend on environment, while the SMF of quiescent galaxies has a significantly steeper low-mass slope in the clusters compared to the field. This indicates that a different quenching mechanism is at play in clusters compared to the field, accentuated by a quenched fraction that is much higher in the clusters. We estimate the environmental quenching efficiency (fEQ), that is, the probability for a galaxy that would normally be star forming in the field to be quenched due to its environment. The fEQ shows no stellar-mass dependence in any environment, but it increases from 40% in the cluster outskirts to ∼90% in the cluster centres. The radial signature of fEQ provides constraints on where the dominant quenching mechanism operates in these clusters and on what timescale. Exploring these using a simple model based on galaxy orbits obtained from an N-body simulation, we find a clear degeneracy between both parameters. For example, the quenching process may either be triggered on a long (∼3 Gyr) timescale at large radii (r  ∼  8 R500), or happen well within 1 Gyr at r <  R500. The radius where quenching is triggered is at least rquench >  0.67 R500 (95%CL). The ICM density at this location (as probed with XMM-Newton) suggests that ram-pressure stripping of the cold gas is a likely cause of quenching. In addition to this cluster-quenching mechanism, we find that 20–32%, depending on the cluster-specific quenching process, of accreted galaxies were already pre-processed (i.e. quenched by the surrounding overdensities) before they fell into the clusters.


2020 ◽  
Vol 493 (4) ◽  
pp. 5987-6000 ◽  
Author(s):  
Lyndsay J Old ◽  
Michael L Balogh ◽  
Remco F J van der Burg ◽  
Andrea Biviano ◽  
Howard K C Yee ◽  
...  

ABSTRACT We present results on the environmental dependence of the star-forming galaxy main sequence in 11 galaxy cluster fields at 1.0 &lt; z &lt; 1.5 from the Gemini Observations of Galaxies in Rich Early Environments Survey (GOGREEN) survey. We use a homogeneously selected sample of field and cluster galaxies whose membership is derived from dynamical analysis. Using [$\rm{O{\small II}}$]-derived star formation rates (SFRs), we find that cluster galaxies have suppressed SFRs at fixed stellar mass in comparison to their field counterparts by a factor of 1.4 ± 0.1 (∼3.3σ) across the stellar mass range: 9.0 &lt; log (M*/M⊙) &lt; 11.2. We also find that this modest suppression in the cluster galaxy star-forming main sequence is mass and redshift dependent: the difference between cluster and field increases towards lower stellar masses and lower redshift. When comparing the distribution of cluster and field galaxy SFRs to the star-forming main sequence, we find an overall shift towards lower SFRs in the cluster population, and note the absence of a tail of high SFR galaxies as seen in the field. Given this observed suppression in the cluster galaxy star-forming main sequence, we explore the implications for several scenarios such as formation time differences between cluster and field galaxies, and environmentally induced star formation quenching and associated time-scales.


2020 ◽  
Vol 500 (1) ◽  
pp. 40-53
Author(s):  
Fernanda Roman-Oliveira ◽  
Ana L Chies-Santos ◽  
Fabricio Ferrari ◽  
Geferson Lucatelli ◽  
Bruno Rodríguez Del Pino

ABSTRACT We explore the morphometric properties of a group of 73 ram-pressure stripping candidates in the A901/A902 multicluster system, at z∼ 0.165, to characterize the morphologies and structural evolution of jellyfish galaxies. By employing a quantitative measurement of morphometric indicators with the algorithm morfometryka on Hubble Space Telescope (F606W) images of the galaxies, we present a novel morphology-based method for determining trail vectors. We study the surface brightness profiles and curvature of the candidates and compare the results obtained with two analysis packages, morfometryka and iraf/ellipse on retrieving information of the irregular structures present in the galaxies. Our morphometric analysis shows that the ram-pressure stripping candidates have peculiar concave regions in their surface brightness profiles. Therefore, these profiles are less concentrated (lower Sérsic indices) than other star-forming galaxies that do not show morphological features of ram-pressure stripping. In combination with morphometric trail vectors, this feature could both help identify galaxies undergoing ram-pressure stripping and reveal spatial variations in the star formation rate.


2019 ◽  
Vol 621 ◽  
pp. A131 ◽  
Author(s):  
C. Maier ◽  
B. L. Ziegler ◽  
C. P. Haines ◽  
G. P. Smith

Aims. As large-scale structures in the Universe develop with time, environmental effects become more and more important as a star formation quenching mechanism. Since the effects of environmental quenching are more pronounced in denser structures that form at later times, we seek to constrain environmental quenching processes using cluster galaxies at z <  0.3. Methods. We explored seven clusters from the Local Cluster Substructure Survey (LoCuSS) at 0.15 <  z <  0.26 with spectra of 1965 cluster members in a mass-complete sample from the ACReS (Arizona Cluster Redshift Survey) Hectospec survey covering a region that corresponds to about three virial radii for each cluster. We measured fluxes of [O II] λ 3727, Hβ, [O III] λ 5007, Hα, and [N II] λ 6584 emission lines of cluster members, enabling us to unambiguously derive O/H gas metallicities. We also measured star formation rates (SFRs) from extinction-corrected Hα fluxes. We compared our cluster galaxy sample with a field sample of 705 galaxies at similar redshifts observed with Hectospec as part of the same survey. Results. We find that star-forming cluster and field galaxies show similar median specific SFRs in a given mass bin of 1 − 3.2 × 1010 M⊙ and 3.2 − 10 × 1010 M⊙, respectively. But their O/H values are displaced, in the lower mass bin, to higher values (significance 2.4σ) at projected radii of R <  R200 compared with galaxies at larger radii and in the field. The comparison with metallicity-SFR-mass model predictions with inflowing gas indicates a slow-quenching scenario in which strangulation is initiated when galaxies pass R ∼ R200 by stopping the inflow of gas. We find tentative evidence that the metallicities of cluster members inside R200 are thereby increasing, but their SFRs are hardly affected for a period of time because these galaxies consume available disk gas. We use the observed fraction of star-forming cluster galaxies as a function of clustercentric radius compared to predictions from the Millennium simulation to constrain quenching timescales to be 1−2 Gyr, which is defined as the time between the moment the galaxy passes R200 until complete quenching of star formation. This is consistent with a slow-then-rapid quenching scenario. Slow quenching (strangulation) starts when the gas inflow is stopped when the galaxy passes R200 with a phase in which cluster galaxies are still star forming, but they show elevated metallicities tracing the ongoing quenching. This phase lasts for 1−2 Gyr, and meanwhile the galaxies travel to denser inner regions of the cluster. This is followed by a “rapid” phase, i.e., a rapid complete quenching of star formation due to the increasing ram pressure toward the cluster center that can also strip the cold gas in massive galaxies.


2019 ◽  
Vol 488 (3) ◽  
pp. 3929-3948 ◽  
Author(s):  
M Cano-Díaz ◽  
V Ávila-Reese ◽  
S F Sánchez ◽  
H M Hernández-Toledo ◽  
A Rodríguez-Puebla ◽  
...  

ABSTRACT We study the global star formation rate (SFR) versus stellar mass (M*) correlation, and the spatially resolved SFR surface density (ΣSFR) versus stellar mass surface density (Σ*) correlation, in a sample of ∼2000 galaxies from the MaNGA MPL-5 survey. We classify galaxies and spatially resolved areas into star forming and retired according to their ionization processes. We confirm the existence of a star-forming main sequence (SFMS) for galaxies and spatially resolved areas, and show that they have the same nature, with the global as a consequence of the local one. The latter presents a bend below a limit Σ* value, ≈3 × 107 M$\odot$ kpc−2, which is not physical. Using only star-forming areas (SFAs) above this limit, a slope and a scatter of ≈1 and ≈0.27 dex are determined. The retired galaxies/areas strongly segregate from their respective SFMSs, by ∼−1.5 dex on average. We explore how the global/local SFMSs depend on galaxy morphology, finding that for star-forming galaxies and SFAs, there is a trend to lower values of star formation activity with earlier morphological types, which is more pronounced for the local SFMS. The morphology not only affects the global SFR due to the diminish of SFAs with earlier types, but also affects the local SF process. Our results suggest that the local SF at all radii is established by some universal mechanism partially modulated by morphology. Morphology seems to be connected to the slow aging and sharp decline of the SF process, and on its own it may depend on other properties as the environment.


2019 ◽  
Vol 15 (S341) ◽  
pp. 83-87
Author(s):  
E. Iani ◽  
G. Rodighiero ◽  
J. Fritz ◽  
G. Cresci ◽  
C. Mancini ◽  
...  

AbstractBrightest cluster galaxies (BCGs) residing in cool-core clusters are known to be the stage of intricate baryon cycle phenomena (e.g. gas inflows, AGN outflows, star formation feedback). The scenarios describing the observed properties of these galaxies are still controversial, suffering from limitations due to the spatial resolving power of the instruments, specifically for galaxies beyond the Local Universe. However, the dramatic improvements introduced by the integral-field unit instruments (e.g. MUSE) could shed light on the physical processes driving the evolution of these galaxies. We present an extensive analysis of the stellar and gas properties (i.e. kinematics, stellar mass, star formation rate) of the radio-loud BCG sitting at the centre of the X-ray luminous cool-core cluster Abell 2667 (z = 0.23), based on MUSE data. Our results indicate that the BCG is a massive elliptical, hosting an AGN that is possibly undergoing accretion of cold star-forming clouds of ICM or galactic cannibalism.


2016 ◽  
Vol 11 (S321) ◽  
pp. 257-259
Author(s):  
Alexandre Y. K. Bouquin ◽  
Armando Gil de Paz

AbstractWe present our new, spatially-resolved, photometry in FUV and NUV from images obtained by GALEX, and IRAC1 (3.6 μm) photometry obtained by the Spitzer Space Telescope. We analyzed the surface brightness profiles μFUV, μNUV, μ[3.6], as well as the radial evolution of the (FUV-NUV), (FUV - [3.6]), and (NUV - [3.6]) colors in the Spitzer Survey of Stellar Structures in Galaxies (S4G) galaxies (d < 40 Mpc) sample. We defined the GALEX Blue Sequence (GBS) and GALEX Red Sequence (GBR) from the (FUV - NUV) versus (NUV - [3.6]) color-color diagram, populated by late-type star forming galaxies and quiescent early-type galaxies respectively. While most disk becomes radially bluer for GBS galaxies, and stay constant for GRS galaxies, a large fraction ( > 50%) of intermediary GALEX Green Valley (GGV) galaxies’ outer disks are becoming redder. An outside-in quenching mechanism such as environmentally-related mechanisms such as starvation or ram-pressure-stripping could explain our results.


2020 ◽  
Vol 496 (1) ◽  
pp. 442-455 ◽  
Author(s):  
Kshitija Kelkar ◽  
K S Dwarakanath ◽  
Bianca M Poggianti ◽  
Alessia Moretti ◽  
Rogério Monteiro-Oliveira ◽  
...  

ABSTRACT We present a detailed analysis of star formation properties of galaxies in a nearby (z ∼ 0.046) young (∼0.6 Gyr) post-merger cluster system A3376, with a moderate merger shock front (vs ∼1630 km s−1; $\mathcal {M}$ ∼ 2) observed as symmetric radio relics. Exploiting the spectroscopic data from the wide-field OmegaWINGS survey and the associated photometric information, our investigations reveal the plausible effects of the dynamic post-merger environment differing from the high-density cluster environment experienced prior to the merging activity. The remnants of the pre-merger relaxed cluster environment are realized through the existence of passive spiral galaxies located in the central regions of the cluster between the two brightest cluster galaxies. We discover A3376 to contain a population of massive (log (M*/M⊙) &gt; 10) blue regular star-forming spirals in regions of maximum merger shock influence but exhibiting star formation rates similar to those in relaxed clusters at similar epoch. We further discover low-mass (log (M*/M⊙) ≤ 10) late-type blue post-starburst galaxies which could either be formed as a result of rapid quenching of low-mass spirals following the shock-induced star formation or due to the intense surge in the intracluster medium pressures at the beginning of the merger. With the possibility of the merger shock affecting high- and low-mass spirals differently, our results bridge the seemingly contradictory results observed in known merging cluster systems so far and establish that different environmental effects are at play right from pre- to post-merger stages.


2019 ◽  
Vol 489 (2) ◽  
pp. 2792-2818 ◽  
Author(s):  
A Zanella ◽  
E Le Floc’h ◽  
C M Harrison ◽  
E Daddi ◽  
E Bernhard ◽  
...  

ABSTRACT We investigate the contribution of clumps and satellites to the galaxy mass assembly. We analysed spatially resolved HubbleSpace Telescope observations (imaging and slitless spectroscopy) of 53 star-forming galaxies at z ∼ 1–3. We created continuum and emission line maps and pinpointed residual ‘blobs’ detected after subtracting the galaxy disc. Those were separated into compact (unresolved) and extended (resolved) components. Extended components have sizes ∼2 kpc and comparable stellar mass and age as the galaxy discs, whereas the compact components are 1.5 dex less massive and 0.4 dex younger than the discs. Furthermore, the extended blobs are typically found at larger distances from the galaxy barycentre than the compact ones. Prompted by these observations and by the comparison with simulations, we suggest that compact blobs are in situ formed clumps, whereas the extended ones are accreting satellites. Clumps and satellites enclose, respectively, ∼20 per cent and ≲80 per cent of the galaxy stellar mass, ∼30 per cent and ∼20 per cent of its star formation rate. Considering the compact blobs, we statistically estimated that massive clumps (M⋆ ≳ 109 M⊙) have lifetimes of ∼650 Myr, and the less massive ones (108 < M⋆ < 109 M⊙) of ∼145 Myr. This supports simulations predicting long-lived clumps (lifetime ≳ 100 Myr). Finally, ≲30 per cent (13 per cent) of our sample galaxies are undergoing single (multiple) merger(s), they have a projected separation ≲10 kpc, and the typical mass ratio of our satellites is 1:5 (but ranges between 1:10 and 1:1), in agreement with literature results for close pair galaxies.


2020 ◽  
Vol 635 ◽  
pp. A32 ◽  
Author(s):  
G. Castignani ◽  
F. Combes ◽  
P. Salomé ◽  
J. Freundlich

The mechanisms governing the stellar mass assembly and star formation history of brightest cluster galaxies (BCGs) are still being debated. By means of new and archival molecular gas observations we investigate the role of dense megaparsec-scale environments in regulating the fueling of star formation in distant BCGs, through cosmic time. We observed in CO with the IRAM 30 m telescope two star-forming BCGs belonging to SpARCS clusters, namely, 3C 244.1 (z = 0.4) and SDSS J161112.65+550823.5 (z = 0.9), and compared their molecular gas and star formation properties with those of a compilation of ∼100 distant cluster galaxies from the literature, including nine additional distant BCGs at z  ∼  0.4 − 3.5. We set robust upper limits of MH2 <  1.0 × 1010 M⊙ and < 2.8 × 1010 M⊙ to their molecular gas content, respectively, and to the ratio of molecular gas to stellar mass M(H2)/M⋆ ≲ 0.2 and depletion time τdep ≲ 40 Myr of the two targeted BCGs. They are thus among the distant cluster galaxies with the lowest gas fractions and shortest depletion times. The majority (64%±15% and 73%±18%) of the 11 BCGs with observations in CO have lower M(H2)/M⋆ values and τdep, respectively, than those estimated for main sequence galaxies. Statistical analysis also tentatively suggests that the values of M(H2)/M⋆ and τdep for the 11 BCGs deviates, with a significance of ∼2σ, from those of the comparison sample of cluster galaxies. A morphological analysis for a subsample of seven BCGs with archival HST observations reveals that 71%±17% of the BCGs are compact or show star-forming components or substructures. Our results suggest a scenario where distant star-forming BCGs assemble a significant fraction ∼16% of their stellar mass on the relatively short timescale ∼τdep, while environmental mechanisms might prevent the replenishment of gas feeding the star formation. We speculate that compact components also favor the rapid exhaustion of molecular gas and ultimately help to quench the BCGs. Distant star-forming BCGs are excellent targets for ALMA and for next-generation telescopes such as the James Webb Space Telescope.


Sign in / Sign up

Export Citation Format

Share Document