scholarly journals Improving Planet Detection with Disk Modeling: Keck/NIRC2 Imaging of the HD 34282 Single-armed Protoplanetary Disk

2022 ◽  
Vol 924 (1) ◽  
pp. L4
Author(s):  
Juan Quiroz ◽  
Nicole L. Wallack ◽  
Bin Ren ◽  
Ruobing Dong ◽  
Jerry W. Xuan ◽  
...  

Abstract Formed in protoplanetary disks around young stars, giant planets can leave observational features such as spirals and gaps in their natal disks through planet–disk interactions. Although such features can indicate the existence of giant planets, protoplanetary disk signals can overwhelm the innate luminosity of planets. Therefore, in order to image planets that are embedded in disks, it is necessary to remove the contamination from the disks to reveal the planets possibly hiding within their natal environments. We observe and directly model the detected disk in the Keck/NIRC2 vortex coronagraph L′-band observations of the single-armed protoplanetary disk around HD 34282. Despite a nondetection of companions for HD 34282, this direct disk modeling improves planet detection sensitivity by up to a factor of 2 in flux ratio and ∼10 M Jupiter in mass. This suggests that performing disk modeling can improve directly imaged planet detection limits in systems with visible scattered light disks, and can help to better constrain the occurrence rates of self-luminous planets in these systems.

2020 ◽  
Vol 644 ◽  
pp. A149
Author(s):  
C. Xie ◽  
S. Y. Haffert ◽  
J. de Boer ◽  
M. A. Kenworthy ◽  
J. Brinchmann ◽  
...  

Context. Protoplanetary disks contain structures such as gaps, rings, and spirals, which are thought to be produced by the interaction between the disk and embedded protoplanets. However, only a few planet candidates are found orbiting within protoplanetary disks, and most of them are being challenged as having been confused with disk features. Aims. The VLT/MUSE discovery of PDS 70 c demonstrated a powerful way of searching for still-forming protoplanets by targeting accretion signatures with medium-resolution integral field spectroscopy. We aim to discover more proto-planetary candidates with MUSE, with a secondary aim of improving the high-resolution spectral differential imaging (HRSDI) technique by analyzing the instrumental residuals of MUSE. Methods. We analyzed MUSE observations of five young stars with various apparent brightnesses and spectral types. We applied the HRSDI technique to perform high-contrast imaging. The detection limits were estimated using fake planet injections. Results. With a 30 min integration time, MUSE can reach 5σ detection limits in apparent Hα line flux down to 10−14 and 10−15 erg s−1 cm−2 at 0.075′′ and 0.25′′, respectively. In addition to PDS 70 b and c, we did not detect any clear accretion signatures in PDS 70, J1850-3147, and V1094 Sco down to 0.1′′. MUSE avoids the small sample statistics problem by measuring the noise characteristics in the spatial direction at multiple wavelengths. We detected two asymmetric atomic jets in HD 163296 with a very high spatial resolution (down to 8 au) and medium spectral resolution (R ~ 2500). Conclusions. The HRSDI technique when applied to MUSE data allows us to reach the photon noise limit at small separations (i.e., <0.5′′). With the combination of high-contrast imaging and medium spectral resolution, MUSE can achieve fainter detection limits in apparent line flux than SPHERE/ZIMPOL by a factor of ~5. MUSE has some instrumental issues that limit the contrast that appear in cases with strong point sources, which can be either a spatial point source due to high Strehl observations or a spectral point source due to a high line-to-continuum ratio. We modified the HRSDI technique to better handle the instrumental artifacts and improve the detection limits. To avoid the instrumental effects altogether, we suggest faint young stars with relatively low Hα line-to-continuum ratio to be the most suitable targets for MUSE to search for potential protoplanets.


2018 ◽  
Vol 618 ◽  
pp. L3 ◽  
Author(s):  
C. F. Manara ◽  
A. Morbidelli ◽  
T. Guillot

When and how planets form in protoplanetary disks is still a topic of discussion. Exoplanet detection surveys and protoplanetary disk surveys are now providing results that are leading to new insights. We collect the masses of confirmed exoplanets and compare their dependence on stellar mass with the same dependence for protoplanetary disk masses measured in ∼1–3 Myr old star-forming regions. We recalculated the disk masses using the new estimates of their distances derived from Gaia DR2 parallaxes. We note that single and multiple exoplanetary systems form two different populations, probably pointing to a different formation mechanism for massive giant planets around very low-mass stars. While expecting that the mass in exoplanetary systems is much lower than the measured disk masses, we instead find that exoplanetary systems masses are comparable or higher than the most massive disks. This same result is found by converting the measured planet masses into heavy element content (core masses for the giant planets and full masses for the super-Earth systems) and by comparing this value with the disk dust masses. Unless disk dust masses are heavily underestimated, this is a big conundrum. An extremely efficient recycling of dust particles in the disk cannot solve this conundrum. This implies that either the cores of planets have formed very rapidly (<0.1–1 Myr) and a large amount of gas is expelled on the same timescales from the disk, or that disks are continuously replenished by fresh planet-forming material from the environment. These hypotheses can be tested by measuring disk masses in even younger targets and by better understanding if and how the disks are replenished by their surroundings.


2013 ◽  
Vol 8 (S299) ◽  
pp. 12-16
Author(s):  
Motohide Tamura ◽  

AbstractSEEDS is the first Subaru Strategic Program, whose aim is to conduct a direct imaging survey for giant planets as well as protoplanetary/debris disks at a few to a few tens of AU region around 500 nearby solar-type or more massive young stars devoting 120 Subaru nights for 5 years. The targets are composed of five categories spanning the ages of ~1 Myr to ~1 Gyr. Some RV-planet targets with older ages are also observed. The survey employs the new high-contrast instrument HiCIAO, a successor of the previous NIR coronagraph camera CIAO for the Subaru Telescope. We describe the outline of this survey and present its first three years of results. The survey has published ~20 refereed papers by now. The main results are as follows: (1) detection and characterization of the most unequivocal and lowest-mass planet via direct imaging. (2) detection of a super-Jupiter around the most massive star ever imaged, (3) detection of companions around a retrograde exoplanet system, which supports the Kozai mechanism for the origin of retrograde orbit (not in this proceedings, but see Narita et al. 2010, 2012). We also report (4) the discovery of unprecedentedly detailed structures of more than a dozen of protoplanetary disks and some debris disks. The detected structures such as wide gaps and spirals arms of a Solar-system scale could be signpost of planet.


2020 ◽  
Vol 635 ◽  
pp. A121 ◽  
Author(s):  
G. A. Muro-Arena ◽  
M. Benisty ◽  
C. Ginski ◽  
C. Dominik ◽  
S. Facchini ◽  
...  

Context. Shadows in scattered light images of protoplanetary disks are a common feature and support the presence of warps or misalignments between disk regions. These warps are possibly caused by an inclined (sub-)stellar companion embedded in the disk. Aims. We aim to study the morphology of the protoplanetary disk around the Herbig Ae star HD 139614 based on the first scattered light observations of this disk, which we model with the radiative transfer code MCMax3D. Methods. We obtained J- and H-band observations that show strong azimuthal asymmetries in polarized scattered light with VLT/SPHERE. In the outer disk, beyond ~30 au, a broad shadow spans a range of ~240 deg in position angle, in the east. A bright ring at ~16 au also shows an azimuthally asymmetric brightness, with the faintest side roughly coincidental with the brightest region of the outer disk. Additionally, two arcs are detected at ~34 and ~50 au. We created a simple four-zone approximation to a warped disk model of HD 139614 in order to qualitatively reproduce these features. The location and misalignment of the disk components were constrained from the shape and location of the shadows they cast. Results. We find that the shadow on the outer disk covers a range of position angles too wide to be explained by a single inner misaligned component. Our model requires a minimum of two separate misaligned zones – or a continuously warped region – to cast this broad shadow on the outer disk. A small misalignment of ~4° between adjacent components can reproduce most of the observed shadow features. Conclusions. Multiple misaligned disk zones, potentially mimicking a warp, can explain the observed broad shadows in the HD 139614 disk. A planetary mass companion in the disk, located on an inclined orbit, could be responsible for such a feature and for the dust-depleted gap responsible for a dip in the SED.


2018 ◽  
Vol 617 ◽  
pp. L7
Author(s):  
A. D. Schneider ◽  
C. P. Dullemond ◽  
B. Bitsch

Context. Vertically hydrostatic protoplanetary disk models are based on the assumption that the main heating source, stellar irradiation, does not vary much with time. However, it is known that accreting young stars are variable sources of radiation. This is particularly evident for outbursting sources such as EX Lupi and FU Orionis stars. Aims. We investigate how such outbursts affect the vertical structure of the outer regions of the protoplanetary disk, in particular their appearance in scattered light at optical and near-infrared wavelengths. Methods. We employ the 3D FARGOCA radiation-hydrodynamics code, in polar coordinates, to compute the time-dependent behavior of the axisymmetric disk structure. The temperature is computed self-consistently and time-dependently from the irradiation flux using a two-stage radiative transfer method: first the direct illumination is computed; then the diffuse radiation is treated with the flux-limited diffusion method. The outbursting inner disk region is not included explicitly. Instead, its luminosity is added to the stellar luminosity and is thus included in the irradiation of the outer disk regions. For time snapshots of interest we insert the density structure into the RADMC-3D radiative transfer code and compute the appearance of the disk at optical/near-infrared wavelengths, where we observe stellar light that is scattered off the surface of the disk. Results. We find that, depending on the amplitude of the outbursts, the vertical structure of the disk can become highly dynamic, featuring circular surface waves of considerable amplitude. These “hills” and “valleys” on the disk’s surface show up in the scattered light images as bright and dark concentric rings. Initially these rings are small and act as standing waves, but they subsequently lead to outward propagating waves, like the waves produced by a stone thrown into a pond. These waves continue long after the actual outburst has died out. Conclusions. Single, periodic, or quasiperiodic outbursts of the innermost regions of protoplanetary disks will necessarily lead to wavy structures on the surface of these disks at all radii. We propose that some of the multi-ringed structures seen in optical/infrared images of several protoplanetary disks may have their origin in outbursts that occurred decades or centuries ago. However, the multiple rings seen at (sub-)millimeter wavelengths in HL Tau and several other disks are not expected to be related to such waves.


2018 ◽  
Vol 620 ◽  
pp. A94 ◽  
Author(s):  
A. Garufi ◽  
M. Benisty ◽  
P. Pinilla ◽  
M. Tazzari ◽  
C. Dominik ◽  
...  

Context. Dozens of protoplanetary disks have been imaged in scattered light during the last decade. Aims. The variety of brightness, extension, and morphology from this census motivates a taxonomical study of protoplanetary disks in polarimetric light to constrain their evolution and establish the current framework of this type of observation. Methods. We classified 58 disks with available polarimetric observations into six major categories (Ring, Spiral, Giant, Rim, Faint, and Small disks) based on their appearance in scattered light. We re-calculated the stellar and disk properties from the newly available Gaia DR2 and related these properties with the disk categories. Results. More than half of our sample shows disk substructures. For the remaining sources, the absence of detected features is due to their faintness, their small size, or the disk geometry. Faint disks are typically found around young stars and typically host no cavity. There is a possible dichotomy in the near-infrared (NIR) excess of sources with spiral-disks (high) and ring-disks (low). Like spirals, shadows are associated with a high NIR excess. If we account for the pre-main sequence evolutionary timescale of stars with different mass, spiral arms are likely associated with old disks. We also found a loose, shallow declining trend for the disk dust mass with time. Conclusions. Protoplanetary disks may form substructures like rings very early in their evolution but their detectability in scattered light is limited to relatively old sources ( ≳5 Myr) where the recurrently detected disk cavities cause the outer disk to be illuminate. The shallow decrease of disk mass with time might be due to a selection effect, where disks observed thus far in scattered light are typically massive, bright transition disks with longer lifetimes than most disks. Our study points toward spirals and shadows being generated by planets of a fraction of a Jupiter mass to a few Jupiter masses in size that leave their (observed) imprint on both the inner disk near the star and the outer disk cavity.


2020 ◽  
Vol 635 ◽  
pp. A162 ◽  
Author(s):  
R. Launhardt ◽  
Th. Henning ◽  
A. Quirrenbach ◽  
D. Ségransan ◽  
H. Avenhaus ◽  
...  

Context. The occurrence rate of long-period (a ≳ 50 au) giant planets around young stars is highly uncertain since it is not only governed by the protoplanetary disc structure and planet formation process, but also reflects both dynamical re-structuring processes after planet formation as well as possible capture of planets not formed in situ. Direct imaging is currently the only feasible method to detect such wide-orbit planets and constrain their occurrence rate. Aims. We aim to detect and characterise wide-orbit giant planets during and shortly after their formation phase within protoplanetary and debris discs around nearby young stars. Methods. We carry out a large L′-band high-contrast direct imaging survey for giant planets around 200 young stars with protoplanetary or debris discs using the NACO instrument at the ESO Very Large Telescope on Cerro Paranal in Chile. We use very deep angular differential imaging observations with typically >60° field rotation, and employ a vector vortex coronagraph where feasible to achieve the best possible point source sensitivity down to an inner working angle of about 100 mas. This paper introduces the NACO Imaging Survey for Planets around Young stars (NACO-ISPY), its goals and strategy, the target list, and data reduction scheme, and presents preliminary results from the first 2.5 survey years. Results. We achieve a mean 5 σ contrast of ΔL′ = 6.4 ± 0.1 mag at 150 mas and a background limit of L′bg = 16.5±0.2 mag at >1.′′5. Our detection probability is >50% for companions with ≳8 MJup at semi-major axes of 80–200 au and >13 MJup at 30–250 au. It thus compares well to the detection space of other state-of-the-art high-contrast imaging surveys. We have already contributed to the characterisation of two new planets originally discovered by VLT/SPHERE, but we have not yet independently discovered new planets around any of our target stars. We have discovered two new close-in low-mass stellar companions around R CrA and HD 193571 and report in this paper the discovery of close co-moving low-mass stellar companions around HD 72660 and HD 92536. Furthermore, we report L′-band scattered light images of the discs around eleven stars, six of which have never been imaged at L′-band before. Conclusions. The first 2.5 yr of the NACO-ISPY survey have already demonstrated that VLT/NACO combined with our survey strategy can achieve the anticipated sensitivity to detect giant planets and reveal new close stellar companions around our target stars.


2020 ◽  
Vol 500 (3) ◽  
pp. 3920-3925
Author(s):  
Wolfgang Brandner ◽  
Hans Zinnecker ◽  
Taisiya Kopytova

ABSTRACT Only a small number of exoplanets have been identified in stellar cluster environments. We initiated a high angular resolution direct imaging search using the Hubble Space Telescope (HST) and its Near-Infrared Camera and Multi-Object Spectrometer (NICMOS) instrument for self-luminous giant planets in orbit around seven white dwarfs in the 625 Myr old nearby (≈45 pc) Hyades cluster. The observations were obtained with Near-Infrared Camera 1 (NIC1) in the F110W and F160W filters, and encompass two HST roll angles to facilitate angular differential imaging. The difference images were searched for companion candidates, and radially averaged contrast curves were computed. Though we achieve the lowest mass detection limits yet for angular separations ≥0.5 arcsec, no planetary mass companion to any of the seven white dwarfs, whose initial main-sequence masses were &gt;2.8 M⊙, was found. Comparison with evolutionary models yields detection limits of ≈5–7 Jupiter masses (MJup) according to one model, and between 9 and ≈12 MJup according to another model, at physical separations corresponding to initial semimajor axis of ≥5–8 au (i.e. before the mass-loss events associated with the red and asymptotic giant branch phase of the host star). The study provides further evidence that initially dense cluster environments, which included O- and B-type stars, might not be highly conducive to the formation of massive circumstellar discs, and their transformation into giant planets (with m ≥ 6 MJup and a ≥6 au). This is in agreement with radial velocity surveys for exoplanets around G- and K-type giants, which did not find any planets around stars more massive than ≈3 M⊙.


2014 ◽  
Vol 9 (S310) ◽  
pp. 194-203 ◽  
Author(s):  
Sean N. Raymond ◽  
Alessandro Morbidelli

AbstractThe “Grand Tack” model proposes that the inner Solar System was sculpted by the giant planets' orbital migration in the gaseous protoplanetary disk. Jupiter first migrated inward then Jupiter and Saturn migrated back outward together. If Jupiter's turnaround or “tack” point was at ~ 1.5 AU the inner disk of terrestrial building blocks would have been truncated at ~ 1 AU, naturally producing the terrestrial planets' masses and spacing. During the gas giants' migration the asteroid belt is severely depleted but repopulated by distinct planetesimal reservoirs that can be associated with the present-day S and C types. The giant planets' orbits are consistent with the later evolution of the outer Solar System.Here we confront common criticisms of the Grand Tack model. We show that some uncertainties remain regarding the Tack mechanism itself; the most critical unknown is the timing and rate of gas accretion onto Saturn and Jupiter. Current isotopic and compositional measurements of Solar System bodies – including the D/H ratios of Saturn's satellites – do not refute the model. We discuss how alternate models for the formation of the terrestrial planets each suffer from an internal inconsistency and/or place a strong and very specific requirement on the properties of the protoplanetary disk.We conclude that the Grand Tack model remains viable and consistent with our current understanding of planet formation. Nonetheless, we encourage additional tests of the Grand Tack as well as the construction of alternate models.


2010 ◽  
Vol 523 ◽  
pp. A69 ◽  
Author(s):  
Zs. Regály ◽  
Zs. Sándor ◽  
C. P. Dullemond ◽  
R. van Boekel

Sign in / Sign up

Export Citation Format

Share Document