scholarly journals Rapid Bursts of Magnetically Gated Accretion in the Intermediate Polar V1025 Cen

2022 ◽  
Vol 924 (1) ◽  
pp. L8
Author(s):  
Colin Littlefield ◽  
Jean-Pierre Lasota ◽  
Jean-Marie Hameury ◽  
Simone Scaringi ◽  
Peter Garnavich ◽  
...  

Abstract Magnetically gated accretion has emerged as a proposed mechanism for producing extremely short, repetitive bursts of accretion onto magnetized white dwarfs in intermediate polars (IPs), but this phenomenon has not been detected previously in a confirmed IP. We report the 27 day TESS light curve of V1025 Cen, an IP that shows a remarkable series of 12 bursts of accretion, each lasting for less than 6 hours. The extreme brevity of the bursts and their short recurrence times (∼1–3 days) are incompatible with the dwarf-nova instability, but they are natural consequences of the magnetic gating mechanism developed by Spruit and Taam to explain the Type II bursts of the accreting neutron star known as the Rapid Burster. In this model, the accretion flow piles up at the magnetospheric boundary and presses inward until it couples with the star’s magnetic field, producing an abrupt burst of accretion. After each burst, the reservoir of matter at the edge of the magnetosphere is replenished, leading to cyclical bursts of accretion. A pair of recent studies applied this instability to the suspected IPs MV Lyr and TW Pic, but the magnetic nature of these two systems has not been independently confirmed. In contrast, previous studies have unambiguously established the white dwarf in V1025 Cen to be significantly magnetized. The detection of magnetically gated bursts in a confirmed IP therefore validates the extension of the Spruit and Taam instability to magnetized white dwarfs.

1996 ◽  
Vol 158 ◽  
pp. 161-164
Author(s):  
G. A. Wynn ◽  
A. R. King

The large-scale accretion flow in the intermediate polars (IPs) is still a matter of vigorous debate. It is known that the magnetic field of the white dwarf (WD) controls the accretion flow close to the surface, channeling the plasma onto the polecaps and giving rise to X-ray emission modulated at the WD spin period (Pspin). After their discovery it was assumed that IPs were the WD analogues of the pulsing X-ray binaries, where a magnetic neutron star accretes from a disrupted accretion disc. However, a number of authors have pointed out that the criteria for disc formation in IPs are less certain than those for the X-ray binaries.The simplest possible criterion for disc formation in a binary is that the accretion flow should be able to orbit freely about the primary star (see Frank, King & Raine 1991 for a review). In non-magnetic systems this is merely the condition that the minimum approach distance of the free stream (Rmin) should exceed the radius of the primary. The situation in magnetic systems is more complex, as the magnetic field of the primary presents an obstacle to the infalling accretion stream. In many treatments of IPs it is assumed that the plasma stream is able to orbit freely about the WD until the ram pressure of the stream is of the same order as the magnetic pressureρv2~B2/8π, whereρis the stream density,vthe stream velocity andBthe local magnetic field strength. This condition fixes the magnetospheric radius,Rmag, inside which the magnetic field is assumed to thread the stream material and direct the accretion flow along the fieldlines.


2020 ◽  
Vol 498 (1) ◽  
pp. 1397-1405 ◽  
Author(s):  
Wenbin Lu ◽  
Pawan Kumar ◽  
Bing Zhang

ABSTRACT The discovery of a fast radio burst (FRB) in our Galaxy associated with a magnetar (neutron star with strong magnetic field) has provided a critical piece of information to help us finally understand these enigmatic transients. We show that the volumetric rate of Galactic-FRB like events is consistent with the faint end of the cosmological FRB rate, and hence they most likely belong to the same class of transients. The Galactic FRB had an accompanying X-ray burst, but many X-ray bursts from the same object had no radio counterpart. Their relative rates suggest that for every FRB there are roughly 102–103 X-ray bursts. The radio light curve of the Galactic FRB had two spikes, separated by 30 ms in the 400–800 MHz frequency band. This is an important clue and highly constraining of the class of models where the radio emission is produced outside the light cylinder of the magnetar. We suggest that magnetic disturbances close to the magnetar surface propagate to a distance of a few tens of neutron star radii where they damp and produce radio emission. The coincident hard X-ray spikes associated with the two FRB pulses seen in this burst and the flux ratio between the two frequency bands can be understood in this scenario. This model provides a unified picture for faint bursts like the Galactic FRB as well as the bright events seen at cosmological distances.


2002 ◽  
Vol 11 (08) ◽  
pp. 1305-1319 ◽  
Author(s):  
BANIBRATA MUKHOPADHYAY

Here we study the accretion process around neutron stars, especially for the cases where shock does form in the accretion disk. In case of accretion flows around a black hole, close to the horizon the matter is supersonic. On the other hand for the case of neutron stars and white dwarfs, matter must be subsonic close to the inner boundary. So the nature of the inflowing matter around neutron stars and white dwarfs are strictly different from that around black holes in the inner region of the disk. Here we discuss a few phenomena and the corresponding solutions of hydrodynamic equations of matter in an accretion disk around slowly rotating neutron stars without magnetic field.


1984 ◽  
Vol 5 (4) ◽  
pp. 478-480 ◽  
Author(s):  
J. G. Kirk ◽  
D. B. Melrose ◽  
J. G. Peters

Cyclotron lines have been observed in the X-ray spectra of two pulsed sources: Her X-1 (Trümper et al. 1978) and 4U 0115 + 63 (Wheaton et al. 1979). The generally accepted model for these objects involves an accretion flow from a companion star in a close binary system onto small regions close to the magnetic poles of a strongly magnetized neutron star. Immediately above the surface, matter is confined in an accretion column by the magnetic field.


2004 ◽  
Vol 190 ◽  
pp. 208-214
Author(s):  
João Batista Garcia Canalle ◽  
Kinwah Wu ◽  
Mark Cropper ◽  
Gavin Ramsay ◽  
Curtis J. Saxton

AbstractA hydrodynamic formulation for accretion flow channeled by a dipolar magnetic field is constructed using a curvi-linear coordinate system natural to the field structure. We solve the hydrodynamic equations and determine the velocity, density and temperature profiles of the post-shock accretion flow. The results are applied to accretion flows in intermediate polars. We have found that for systems with massive white dwarfs (~ 1 M⊙) the temperature profiles in the flow can differ significantly to those obtained from models in which the accretion column is assumed to be cylindrical.


2004 ◽  
Vol 190 ◽  
pp. 58-70
Author(s):  
Andrew Cumming

AbstractI discuss the effect of accretion on the magnetic field of an accreting white dwarf. Whereas the magnetic fields of isolated white dwarfs are not expected to change significantly with time, I show that if an accreting white dwarf increases in mass at a rate > 1–5 × 10−10MΘ yr–1, accretion overcomes ohmic diffusion and has a significant effect on the field structure. I discuss the implications of this result for observed systems. In particular, accretion induced field evolution may provide the missing evolutionary link between the strong field, slowly accreting AM Her systems and the weak field, more rapidly accreting intermediate polars.


1994 ◽  
Vol 147 ◽  
pp. 186-213
Author(s):  
J. Isern ◽  
R. Canal

AbstractIn this paper we review the behavior of growing stellar degenerate cores. It is shown that ONeMg white dwarfs and cold CO white dwarfs can collapse to form a neutron star. This collapse is completely silent since the total amount of radioactive elements that are expelled is very small and a burst of γ-rays is never produced. In the case of an explosion (always carbonoxygen cores), the outcome fits quite well the observed properties of Type Ia supernovae. Nevertheless, the light curves and the velocities measured at maximum are very homogeneous and the diversity introduced by igniting at different densities is not enough to account for the most extreme cases observed. It is also shown that a promising way out of this problem could be the He-induced detonation of white dwarfs with different masses. Finally, we outline that the location of the border line which separetes explosion from collapse strongly depends on the input physics adopted.


1996 ◽  
Vol 145 ◽  
pp. 137-147
Author(s):  
S. E. Woosley ◽  
T. A. Weaver ◽  
R. G. Eastman

We review critical physics affecting the observational characteristics of those supernovae that occur in massive stars. Particular emphasis is given to 1) how mass loss, either to a binary companion or by a radiatively driven wind, affects the type and light curve of the supernova, and 2) the interaction of the outgoing supernova shock with regions of increasing pr3 in the stellar mantle. One conclusion is that Type II-L supernovae may occur in mass exchanging binaries very similar to the one that produced SN 1993J, but with slightly larger initial separations and residual hydrogen envelopes (∼1 Mʘ and radius ∼ several AU). The shock interaction, on the other hand, has important implications for the formation of black holes in explosions that are, near peak light, observationally indistinguishable from ordinary Type II-p and lb supernovae.


2018 ◽  
Vol 27 (10) ◽  
pp. 1850083 ◽  
Author(s):  
Ritam Mallick ◽  
Amit Singh

In this paper, we present the effect of a strong magnetic field in the burning of a neutron star (NS). We have used relativistic magneto-hydrostatic (MHS) conservation equations for studying the PT from nuclear matter (NM) to quark matter (QM). We found that the shock-induced phase transition (PT) is likely if the density of the star core is more than three times nuclear saturation ([Formula: see text]) density. The conversion process from NS to quark star (QS) is found to be an exothermic process beyond such densities. The burning process at the star center most likely starts as a deflagration process. However, there can be a small window at lower densities where the process can be a detonation one. At small enough infalling matter velocities the resultant magnetic field of the QS is lower than that of the NS. However, for a higher value of infalling matter velocities, the magnetic field of QM becomes larger. Therefore, depending on the initial density fluctuation and on whether the PT is a violent one or not the QS could be more magnetic or less magnetic. The PT also have a considerable effect on the tilt of the magnetic axis of the star. For smaller velocities and densities the magnetic angle are not affected much but for higher infalling velocities tilt of the magnetic axis changes suddenly. The magnetic field strength and the change in the tilt axis can have a significant effect on the observational aspect of the magnetars.


Sign in / Sign up

Export Citation Format

Share Document