An Artificial Friction Approach Reflecting Building Resistance for Flood Propagation Simulation on Coarse Grids

2019 ◽  
Author(s):  
DONGLA DONGLAI ◽  
LI JINGMING ◽  
HOU BINGYAO ◽  
LI .
Keyword(s):  
2014 ◽  
Vol 33 (4) ◽  
pp. 1-9 ◽  
Author(s):  
Essex Edwards ◽  
Robert Bridson
Keyword(s):  

2012 ◽  
Vol 236-237 ◽  
pp. 1049-1053
Author(s):  
Zong Zhe Li ◽  
Zheng Hua Wang ◽  
Lu Yao ◽  
Wei Cao

An automatic agglomeration methodology to generate coarse grids for 3D flow solutions on anisotropic unstructured grids has been introduced in this paper. The algorithm combines isotropic octree based coarsening and anisotropic directional agglomeration to yield a desired coarsening ratio and high quality of coarse grids, which developed for cell-centered multigrid applications. This coarsening strategy developed is presented on an unstructured grid over 3D ONERA M6 wing. It is shown that the present method provides suitable coarsening ratio and well defined aspect ratio cells at all coarse grid levels.


Author(s):  
Fazlolah Mohaghegh ◽  
John Mousel ◽  
H. S. Udaykumar

This study is a comparison of two techniques for simulation of particulate flows on fixed Cartesian grids: Sharp interface Method (SIM) (Udaykumar et al., 2001, 2002, 2003) and a modified version of Immersed Boundary Method (Peskin, 1977) (IBM) known as Smoothed Profile Method (SPM) (Nakayama and Yamamoto, 2005; Luo et. al, 2009). Different cases were studied includes flow over one or two moving and stationary particles. Predictions of the drag coefficient shows that SPM and SIM are very close to the experiments. SIM slightly under-predicts the value of the drag coefficient while SPM has a small over-estimation. Moreover, SPM is more accurate on coarse grids. However, with refinement of the grid SIM approaches the exact values very fast leading to better results on fine grids. Flow pattern and vortex structures of SPM and SIM are almost the same. Both methods are capable of analyzing the wake flow. Unlike SIM, SPM is able to simulate the flow when two particles are in contact. When two particles are in motion and are very close in a way that the two interfaces overlap, SPM shows a repulsion force between two spheres which reduces the accuracy in comparison with SIM. However, SPM can achieve the collision of two particles without problem.


2014 ◽  
Vol 24 (08) ◽  
pp. 1495-1539 ◽  
Author(s):  
Francesco Bassi ◽  
Lorenzo Botti ◽  
Alessandro Colombo

In this work we consider agglomeration-based physical frame discontinuous Galerkin (dG) discretization as an effective way to increase the flexibility of high-order finite element methods. The mesh free concept is pursued in the following (broad) sense: the computational domain is still discretized using a mesh but the computational grid should not be a constraint for the finite element discretization. In particular the discrete space choice, its convergence properties, and even the complexity of solving the global system of equations resulting from the dG discretization should not be influenced by the grid choice. Physical frame dG discretization allows to obtain mesh-independent h-convergence rates. Thanks to mesh agglomeration, high-order accurate discretizations can be performed on arbitrarily coarse grids, without resorting to very high-order approximations of domain boundaries. Agglomeration-based h-multigrid techniques are the obvious choice to obtain fast and grid-independent solvers. These features (attractive for any mesh free discretization) are demonstrated in practice with numerical test cases.


2010 ◽  
Vol 54 (03) ◽  
pp. 184-196 ◽  
Author(s):  
N. Alin ◽  
R.E. Bensow ◽  
C. Fureby ◽  
T. Huuva ◽  
U. Svennberg

The flow around an axisymmetric hull, with and without appendages, is investigated using large eddy simulation (LES), detached eddy simulation (DES), and Reynolds averaged Navier Stokes (RANS) models. The main objectives of the study is to investigate the effect of the different simulation methods and to demonstrate the feasibility of using DES and LES on relatively coarse grids for submarine flows, but also to discuss some generic features of submarine hydrodynamics. For this purpose the DARPA Suboff configurations AFF1 (bare hull) and AFF8 (fully appended model) are used. The AFF1 case is interesting because it is highly demanding, in particular for LES and DES, due to the long midship section on which the boundary layer is developed. The AFF8 case represents the complex flow around a fully appended submarine with sail and aft rudders. An actuator disc model is used to emulate some of the effects of the propulsor for one of the AFF8 cases studied. Results for the AFF8 model are thus presented for both "towed" and "self-propelled" conditions, where as for the bare hull, only a "towed" condition is considered. For the AFF1 and the "towed" AFF8 cases experimental data are available for comparison, and the results from both configurations show that all methods give good results for first-order statistical moments although LES gives a better representation of structures and second-order statistical moments in the complex flow in the AFF8 case.


2012 ◽  
Vol 241-244 ◽  
pp. 2957-2961
Author(s):  
Zong Zhe Li ◽  
Zheng Hua Wang ◽  
Wei Cao ◽  
Lu Yao

A robust aspect ratio based agglomeration algorithm to generate high quality coarse grids for unstructured grid is proposed in this paper. The algorithm focuses on multigrid techniques for the numerical solution of Euler equations, which conform to cell-centered finite volume scheme, combines isotropic vertex-based agglomeration to yield large increases in convergence rates. Aspect ratio is used as fusing weight to capture the degree of cell convexity and give an indication of cell quality, agglomerating isotropic cells sharing a common vertex. Consequently, we conduct agglomeration multigrid method to solve Euler equations on 2D isotropic unstructured grid, and compare the results with MGridGen


Author(s):  
M.A.A. Khattab ◽  
D.J. Burns ◽  
R.J. Pick ◽  
J.C. Thompson

In this paper, techniques are developed to handle the integrable singularities of the integral proposed by Burns and Oore for the estimation of opening mode stress intensity factors for embedded planar defects of arbitrary shape. The hybrid numerical-analytical integration techniques developed consider separately two crack front zones and one interior zone of the crack surface. Parameters are established for the sizing of the integration elements within each zone. Studies of elliptical defects with aspect ratios between 1 and 10 demonstrate the accuracy and efficiency of this procedure for computing opening mode stress intensity factors. A simple method which compensates for the quadrature error associated with computationally inexpensive, coarse grids is outlined.


2019 ◽  
Vol 76 (9) ◽  
pp. 2739-2759 ◽  
Author(s):  
Claudia Christine Stephan ◽  
Cornelia Strube ◽  
Daniel Klocke ◽  
Manfred Ern ◽  
Lars Hoffmann ◽  
...  

AbstractLarge uncertainties remain with respect to the representation of atmospheric gravity waves (GWs) in general circulation models (GCMs) with coarse grids. Insufficient parameterizations result from a lack of observational constraints on the parameters used in GW parameterizations as well as from physical inconsistencies between parameterizations and reality. For instance, parameterizations make oversimplifying assumptions about the generation and propagation of GWs. Increasing computational capabilities now allow GCMs to run at grid spacings that are sufficiently fine to resolve a major fraction of the GW spectrum. This study presents the first intercomparison of resolved GW pseudomomentum fluxes (GWMFs) in global convection-permitting simulations and those derived from satellite observations. Six simulations of three different GCMs are analyzed over the period of one month of August to assess the sensitivity of GWMF to model formulation and horizontal grid spacing. The simulations reproduce detailed observed features of the global GWMF distribution, which can be attributed to realistic GWs from convection, orography, and storm tracks. Yet the GWMF magnitudes differ substantially between simulations. Differences in the strength of convection may help explain differences in the GWMF between simulations of the same model in the summer low latitudes where convection is the primary source. Across models, there is no evidence for a systematic change with resolution. Instead, GWMF is strongly affected by model formulation. The results imply that validating the realism of simulated GWs across the entire resolved spectrum will remain a difficult challenge not least because of a lack of appropriate observational data.


2000 ◽  
Vol 122 (2) ◽  
pp. 345-348 ◽  
Author(s):  
Steven M. Miner

This paper presents the results of a study using coarse grids to analyze the flow in the impellers of an axial flow pump and a mixed flow pump. A commercial CFD code (FLOTRAN) is used to solve the 3-D Reynolds Averaged Navier Stokes equations in a rotating cylindrical coordinate system. The standard k−ε turbulence model is used. The meshes for this study use 22,000 nodes and 40,000 nodes for the axial flow impeller, and 26,000 nodes for the mixed flow impeller. Both models are run on a SPARCstation 20. This is in contrast to typical analyses using in excess of 100,000 nodes. The smaller mesh size has advantages in the design environment. Stage design parameters for the axial flow impeller are, rotational speed 870 rpm, flow coefficient ϕ=0.13, head coefficient ψ=0.06, and specific speed 2.97 (8101 US). For the mixed flow impeller the parameters are, rotational speed 890 rpm, flow coefficient ϕ=0.116, head coefficient ψ=0.094, and specific speed 2.01 (5475 US). Evaluation of the models is based on a comparison of circumferentially averaged results to measured data for the same impeller. Comparisons to measured data include axial and tangential velocities, static pressure, and total pressure. A comparison between the coarse and fine meshes for the axial flow impeller is included. Results of this study show that the computational results closely match the shapes and magnitudes of the measured profiles, indicating that coarse CFD models can be used to accurately predict performance. [S0098-2202(00)02202-1]


Sign in / Sign up

Export Citation Format

Share Document