scholarly journals Ionic liquid modified graphene nanoplatelets electrode for high performance supercapacitor

Author(s):  
Mohammad Yasir ◽  
S. A. Hashmi ◽  
Manoj K. Singh
ACS Nano ◽  
2010 ◽  
Vol 5 (1) ◽  
pp. 436-442 ◽  
Author(s):  
Tae Young Kim ◽  
Hyun Wook Lee ◽  
Meryl Stoller ◽  
Daniel R. Dreyer ◽  
Christopher W. Bielawski ◽  
...  

Polymers ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1811
Author(s):  
Valeriia Rostovtseva ◽  
Alexandra Pulyalina ◽  
Roman Dubovenko ◽  
Ilya Faykov ◽  
Kseniya Subbotina ◽  
...  

Modification of polymer matrix by hybrid fillers is a promising way to produce membranes with excellent separation efficiency due to variations in membrane structure. High-performance membranes for the pervaporation dehydration were produced by modifying poly(2,6-dimethyl-1,4-phenylene oxide) (PPO) to facilitate lactic acid purification. Ionic liquid (IL), heteroarm star macromolecules (HSM), and their combination (IL:HSM) were employed as additives to the polymer matrix. The composition and structure of hybrid membranes were characterized by X-ray diffraction and FTIR spectroscopy. Scanning electron microscopy was used to investigate the membranes surface and cross-section morphology. It was established that the inclusion of modifiers in the polymer matrix leads to the change of membrane structure. The influence of IL:HSM was also studied via sorption experiments and pervaporation of water‒lactic acid mixtures. Lactic acid is an essential compound in many industries, including food, pharmaceutical, chemical, while the recovering and purifying account for approximately 50% of its production cost. It was found that the membranes selectively remove water from the feed. Quantum mechanical calculations determine the favorable interactions between various membrane components and the liquid mixture. With IL:HSM addition, the separation factor and performance in lactic acid dehydration were improved compared with pure polymer membrane. The best performance was found for (HSM: IL)-PPO/UPM composite membrane, where the permeate flux and the separation factor of about 0.06 kg m−2 h−1 and 749, respectively, were obtained. The research results demonstrated that ionic liquids in combination with star macromolecules for membrane modification could be a promising approach for membrane design.


2021 ◽  
Vol 412 ◽  
pp. 127034
Author(s):  
Yang Yu ◽  
Zhuoya Ren ◽  
Qianqian Shang ◽  
Jiangang Han ◽  
Lei Li ◽  
...  

2021 ◽  
pp. 095400832199676
Author(s):  
Yuting Ouyang ◽  
Qiu Zhang ◽  
Xiukun Liu ◽  
Ruan Hong ◽  
Xu Xu ◽  
...  

Different ionic liquid modified graphene nanosheets (IG) were induced into polyimide (PI) to improve the tribological, thermal, and mechanical properties of shape memory IG/PI composites. The results demonstrated that when using 1-aminoethyl-3-methylimidazole bromide to modify graphene nanosheets (IG-1), the laser-driven shape recovery rate of IG-1/PI composites (IGPI-1) reached 73.02%, which was 49.36% higher than that of pure PI. In addition, the IGPI-1 composite materials reached the maximum shape recovery rate within 15 s. Additionally, under dry sliding, the addition of IG can significantly improve the tribological properties of composite materials. IGPI-1 exhibited the best self-lubricating properties. Compared with pure PI, the friction coefficient (0.19) and wear rate (2.62 × 10–5) mm3/Nm) were reduced by 44.1% and 24.2%, respectively, and the T10% of IGPI-1 increased by 32.2°C. The Tg of IGPI-1 reached 256.5°C, which was 8.4°C higher than that of pure PI. In addition, the tensile strength and modulus of IGPI-1 reached 82.3 MPa and 1.18 GPa, which were significantly increased by 33.6% and 29.8%, respectively, compared with pure PI. We hope that this work will be helpful for the preparation of shape memory materials with excellent tribological, thermal, and mechanical properties.


RSC Advances ◽  
2021 ◽  
Vol 11 (24) ◽  
pp. 14484-14494
Author(s):  
Yahao Liu ◽  
Jian Zheng ◽  
Xiao Zhang ◽  
Yongqiang Du ◽  
Guibo Yu ◽  
...  

We successfully modified graphene oxide with amino-terminated hyperbranched polyamide (HGO), and obtained a high-performance composite with enhanced strength and elongation at break via cross-linking hydroxyl-terminated polybutadiene chains with HGO.


2016 ◽  
Vol 4 (36) ◽  
pp. 13822-13829 ◽  
Author(s):  
Xiaowei Li ◽  
Sijian Li ◽  
Zhengxi Zhang ◽  
Jun Huang ◽  
Li Yang ◽  
...  

Hybrid ionogel electrolytes have high thermal and electrochemical stability, good ionic conductivity, and potential to suppress Li dendrite formation. Solid-state lithium metal batteries with hybrid electrolytes reveal high capacity and remarkable rate performance.


Sign in / Sign up

Export Citation Format

Share Document