Evaluating the Application Availability of Intelligent Optical Networks Based on the Network Evolution Model

Author(s):  
Zhiwei Yi ◽  
Ning Huang ◽  
Huangsitong Cai
Information ◽  
2019 ◽  
Vol 10 (4) ◽  
pp. 138 ◽  
Author(s):  
Wu ◽  
Shao ◽  
Feng

The evolution of a collaborative innovation network depends on the interrelationships among the innovation subjects. Every single small change affects the network topology, which leads to different evolution results. A logical relationship exists between network evolution and innovative behaviors. An accurate understanding of the characteristics of the network structure can help the innovative subjects to adopt appropriate innovative behaviors. This paper summarizes the three characteristics of collaborative innovation networks, knowledge transfer, policy environment, and periodic cooperation, and it establishes a dynamic evolution model for a resource-priority connection mechanism based on innovation resource theory. The network subjects are not randomly testing all of the potential partners, but have a strong tendency to, which is, innovation resource. The evolution process of a collaborative innovation network is simulated with three different government behaviors as experimental objects. The evolution results show that the government should adopt the policy of supporting the enterprises that recently entered the network, which can maintain the innovation vitality of the network and benefit the innovation output. The results of this study also provide a reference for decision-making by the government and enterprises.


Author(s):  
István Fazekas ◽  
Attila Barta ◽  
Csaba Noszály ◽  
Bettina Porvázsnyik

Author(s):  
Shuang Gu ◽  
Keping Li ◽  
Yan Liang ◽  
Dongyang Yan

An effective and reliable evolution model can provide strong support for the planning and design of transportation networks. As a network evolution mechanism, link prediction plays an important role in the expansion of transportation networks. Most of the previous algorithms mainly took node degree or common neighbors into account in calculating link probability between two nodes, and the structure characteristics which can enhance global network efficiency are rarely considered. To address these issues, we propose a new evolution mechanism of transportation networks from the aspect of link prediction. Specifically, node degree, distance, path, expected network structure, relevance, population and GDP are comprehensively considered according to the characteristics and requirements of the transportation networks. Numerical experiments are done with China’s high-speed railway network, China’s highway network and China’s inland civil aviation network. We compare receiver operating characteristic curve and network efficiency in different models and explore the degree and hubs of networks generated by the proposed model. The results show that the proposed model has better prediction performance and can effectively optimize the network structure compared with other baseline link prediction methods.


Author(s):  
Yuxin Liu ◽  
Zili Zhang ◽  
Chao Gao ◽  
Yuheng Wu ◽  
Tao Qian

Sign in / Sign up

Export Citation Format

Share Document