A transportation network evolution model based on link prediction

Author(s):  
Shuang Gu ◽  
Keping Li ◽  
Yan Liang ◽  
Dongyang Yan

An effective and reliable evolution model can provide strong support for the planning and design of transportation networks. As a network evolution mechanism, link prediction plays an important role in the expansion of transportation networks. Most of the previous algorithms mainly took node degree or common neighbors into account in calculating link probability between two nodes, and the structure characteristics which can enhance global network efficiency are rarely considered. To address these issues, we propose a new evolution mechanism of transportation networks from the aspect of link prediction. Specifically, node degree, distance, path, expected network structure, relevance, population and GDP are comprehensively considered according to the characteristics and requirements of the transportation networks. Numerical experiments are done with China’s high-speed railway network, China’s highway network and China’s inland civil aviation network. We compare receiver operating characteristic curve and network efficiency in different models and explore the degree and hubs of networks generated by the proposed model. The results show that the proposed model has better prediction performance and can effectively optimize the network structure compared with other baseline link prediction methods.

2022 ◽  
Author(s):  
Qiang Lai ◽  
Hong-hao Zhang

Abstract The identification of key nodes plays an important role in improving the robustness of the transportation network. For different types of transportation networks, the effect of the same identification method may be different. It is of practical significance to study the key nodes identification methods corresponding to various types of transportation networks. Based on the knowledge of complex networks, the metro networks and the bus networks are selected as the objects, and the key nodes are identified by the node degree identification method, the neighbor node degree identification method, the weighted k-shell degree neighborhood identification method (KSD), the degree k-shell identification method (DKS), and the degree k-shell neighborhood identification method (DKSN). Take the network efficiency and the largest connected subgraph as the effective indicators. The results show that the KSD identification method that comprehensively considers the elements has the best recognition effect and has certain practical significance.


2017 ◽  
Vol 28 (03) ◽  
pp. 1750033 ◽  
Author(s):  
Peng Luo ◽  
Chong Wu ◽  
Yongli Li

Link prediction measures have been attracted particular attention in the field of mathematical physics. In this paper, we consider the different effects of neighbors in link prediction and focus on four different situations: only consider the individual’s own effects; consider the effects of individual, neighbors and neighbors’ neighbors; consider the effects of individual, neighbors, neighbors’ neighbors, neighbors’ neighbors’ neighbors and neighbors’ neighbors’ neighbors’ neighbors; consider the whole network participants’ effects. Then, according to the four situations, we present our link prediction models which also take the effects of social characteristics into consideration. An artificial network is adopted to illustrate the parameter estimation based on logistic regression. Furthermore, we compare our methods with the some other link prediction methods (LPMs) to examine the validity of our proposed model in online social networks. The results show the superior of our proposed link prediction methods compared with others. In the application part, our models are applied to study the social network evolution and used to recommend friends and cooperators in social networks.


2021 ◽  
Vol 11 (11) ◽  
pp. 5186
Author(s):  
Keping Li ◽  
Shuang Gu ◽  
Dongyang Yan

Link prediction to optimize network performance is of great significance in network evolution. Because of the complexity of network systems and the uncertainty of network evolution, it faces many challenges. This paper proposes a new link prediction method based on neural networks trained on scale-free networks as input data, and optimized networks trained by link prediction models as output data. In order to solve the influence of the generalization of the neural network on the experiments, a greedy link pruning strategy is applied. We consider network efficiency and the proposed global network structure reliability as objectives to comprehensively evaluate link prediction performance and the advantages of the neural network method. The experimental results demonstrate that the neural network method generates the optimized networks with better network efficiency and global network structure reliability than the traditional link prediction models.


2016 ◽  
Vol 30 (31) ◽  
pp. 1650222 ◽  
Author(s):  
Xu-Hua Yang ◽  
Hai-Feng Zhang ◽  
Fei Ling ◽  
Zhi Cheng ◽  
Guo-Qing Weng ◽  
...  

The link prediction algorithm is one of the key technologies to reveal the inherent rule of network evolution. This paper proposes a novel link prediction algorithm based on the properties of the local community, which is composed of the common neighbor nodes of any two nodes in the network and the links between these nodes. By referring to the node degree and the condition of assortativity or disassortativity in a network, we comprehensively consider the effect of the shortest path and edge clustering coefficient within the local community on node similarity. We numerically show the proposed method provide good link prediction results.


2020 ◽  
Vol 31 (04) ◽  
pp. 2050062
Author(s):  
Jingyi Ding ◽  
Licheng Jiao ◽  
Jianshe Wu ◽  
Fang Liu

One way to understand the network function and analyze the network structure is to find the communities of the network accurately. Now, there are many works about designing algorithms for community detection. Most community detection algorithms are based on modularity optimization. However, these methods not only have disadvantages in computational complexity, but also have the problem of resolution restriction. Designing a community detection algorithm that is fast and effective remains a challenge in the field. We attempt to solve the community detection problem in a new perspective in this paper, believing that the assumption used to solve the link prediction problem is useful for the problem of community detection. By using the similarity between modules of the network, we propose a new method to extract the community structure in this paper. Our algorithm consists of three steps. First, we initialize a community partition based on the distribution of the node degree; second, we calculate the similarity between different communities, where the similarity is the index to describe the closeness of the different communities. We assume that the much closer the two different communities are, the greater the likelihood of being divided together; finally, merge the pairs of communities which has the highest similarity value as possible as we can and stop when the condition is not satisfied. Because the convergence of our algorithm is very fast in the process of merging, we find that our method has advantages both in the computational complexity and in the accuracy when compared with other six classical algorithms. Moreover, we design a new measure to describe how difficulty the network division is.


2011 ◽  
Vol 41 (7) ◽  
pp. 816-823 ◽  
Author(s):  
Tao ZHOU ◽  
LinYuan L ◽  
HongKun LIU

2021 ◽  
Vol 25 (3) ◽  
pp. 711-738
Author(s):  
Phu Pham ◽  
Phuc Do

Link prediction on heterogeneous information network (HIN) is considered as a challenge problem due to the complexity and diversity in types of nodes and links. Currently, there are remained challenges of meta-path-based link prediction in HIN. Previous works of link prediction in HIN via network embedding approach are mainly focused on exploiting features of node rather than existing relations in forms of meta-paths between nodes. In fact, predicting the existence of new links between non-linked nodes is absolutely inconvincible. Moreover, recent HIN-based embedding models also lack of thorough evaluations on the topic similarity between text-based nodes along given meta-paths. To tackle these challenges, in this paper, we proposed a novel approach of topic-driven multiple meta-path-based HIN representation learning framework, namely W-MMP2Vec. Our model leverages the quality of node representations by combining multiple meta-paths as well as calculating the topic similarity weight for each meta-path during the processes of network embedding learning in content-based HINs. To validate our approach, we apply W-TMP2Vec model in solving several link prediction tasks in both content-based and non-content-based HINs (DBLP, IMDB and BlogCatalog). The experimental outputs demonstrate the effectiveness of proposed model which outperforms recent state-of-the-art HIN representation learning models.


2020 ◽  
pp. 1-14
Author(s):  
Longjie Li ◽  
Lu Wang ◽  
Hongsheng Luo ◽  
Xiaoyun Chen

Link prediction is an important research direction in complex network analysis and has drawn increasing attention from researchers in various fields. So far, a plethora of structural similarity-based methods have been proposed to solve the link prediction problem. To achieve stable performance on different networks, this paper proposes a hybrid similarity model to conduct link prediction. In the proposed model, the Grey Relation Analysis (GRA) approach is employed to integrate four carefully selected similarity indexes, which are designed according to different structural features. In addition, to adaptively estimate the weight for each index based on the observed network structures, a new weight calculation method is presented by considering the distribution of similarity scores. Due to taking separate similarity indexes into account, the proposed method is applicable to multiple different types of network. Experimental results show that the proposed method outperforms other prediction methods in terms of accuracy and stableness on 10 benchmark networks.


Information ◽  
2019 ◽  
Vol 10 (4) ◽  
pp. 138 ◽  
Author(s):  
Wu ◽  
Shao ◽  
Feng

The evolution of a collaborative innovation network depends on the interrelationships among the innovation subjects. Every single small change affects the network topology, which leads to different evolution results. A logical relationship exists between network evolution and innovative behaviors. An accurate understanding of the characteristics of the network structure can help the innovative subjects to adopt appropriate innovative behaviors. This paper summarizes the three characteristics of collaborative innovation networks, knowledge transfer, policy environment, and periodic cooperation, and it establishes a dynamic evolution model for a resource-priority connection mechanism based on innovation resource theory. The network subjects are not randomly testing all of the potential partners, but have a strong tendency to, which is, innovation resource. The evolution process of a collaborative innovation network is simulated with three different government behaviors as experimental objects. The evolution results show that the government should adopt the policy of supporting the enterprises that recently entered the network, which can maintain the innovation vitality of the network and benefit the innovation output. The results of this study also provide a reference for decision-making by the government and enterprises.


Sign in / Sign up

Export Citation Format

Share Document