Plugging into the network: belowground connections between germlings and extraradical mycelium of arbuscular mycorrhizal fungi

Mycologia ◽  
2011 ◽  
Vol 103 (2) ◽  
pp. 307-316 ◽  
Author(s):  
Cristiana Sbrana ◽  
Paola Fortuna ◽  
Manuela Giovannetti
2005 ◽  
Vol 71 (5) ◽  
pp. 2592-2599 ◽  
Author(s):  
Pål Axel Olsson ◽  
Ingrid M. van Aarle ◽  
Mayra E. Gavito ◽  
Per Bengtson ◽  
Göran Bengtsson

ABSTRACT The ubiquitous arbuscular mycorrhizal fungi consume significant amounts of plant assimilated C, but this C flow has been difficult to quantify. The neutral lipid fatty acid 16:1ω5 is a quantitative signature for most arbuscular mycorrhizal fungi in roots and soil. We measured carbon transfer from four plant species to the arbuscular mycorrhizal fungus Glomus intraradices by estimating 13C enrichment of 16:1ω5 and compared it with 13C enrichment of total root and mycelial C. Carbon allocation to mycelia was detected within 1 day in monoxenic arbuscular mycorrhizal root cultures labeled with [13C]glucose. The 13C enrichment of neutral lipid fatty acid 16:1ω5 extracted from roots increased from 0.14% 1 day after labeling to 2.2% 7 days after labeling. The colonized roots usually were more enriched for 13C in the arbuscular mycorrhizal fungal neutral lipid fatty acid 16:1ω5 than for the root specific neutral lipid fatty acid 18:2ω6,9. We labeled plant assimilates by using 13CO2 in whole-plant experiments. The extraradical mycelium often was more enriched for 13C than was the intraradical mycelium, suggesting rapid translocation of carbon to and more active growth by the extraradical mycelium. Since there was a good correlation between 13C enrichment in neutral lipid fatty acid 16:1ω5 and total 13C in extraradical mycelia in different systems (r 2 = 0.94), we propose that the total amount of labeled C in intraradical and extraradical mycelium can be calculated from the 13C enrichment of 16:1ω5. The method described enables evaluation of C flow from plants to arbuscular mycorrhizal fungi to be made without extraction, purification and identification of fungal mycelia.


2015 ◽  
Vol 50 (4) ◽  
pp. 313-321 ◽  
Author(s):  
Marco Aurélio Carbone Carneiro ◽  
Dorotéia Alves Ferreira ◽  
Edicarlos Damacena de Souza ◽  
Helder Barbosa Paulino ◽  
Orivaldo José Saggin Junior ◽  
...  

The objective of this work was to evaluate the spore density and diversity of arbuscular mycorrhizal fungi (AMF) in soil aggregates from fields of "murundus" (large mounds of soil) in areas converted and not converted to agriculture. The experiment was conducted in a completely randomized design with five replicates, in a 5x3 factorial arrangement: five areas and three aggregate classes (macro-, meso-, and microaggregates). The evaluated variables were: spore density and diversity of AMF, total glomalin, total organic carbon (TOC), total extraradical mycelium (TEM), and geometric mean diameter (GMD) of soil aggregates. A total of 21 AMF species was identified. Spore density varied from 29 to 606 spores per 50 mL of soil and was higher in microaggregates and in the area with 6 years of conversion to agriculture. Total glomalin was higher between murundus in all studied aggregate classes. The area with 6 years showed lower concentration of TOC in macroaggregates (8.6 g kg-1) and in microaggregates (10.1 g kg-1). TEM was greater at the top of the murundus in all aggregate classes. GMD increased with the conversion time to agriculture. The density and diversity of arbuscular mycorrhizal spores change with the conversion of fields of murundus into agriculture.


Mycorrhiza ◽  
2009 ◽  
Vol 19 (5) ◽  
pp. 347-356 ◽  
Author(s):  
Liesbeth Voets ◽  
Ivan Enrique de la Providencia ◽  
Kalyanne Fernandez ◽  
Marleen IJdo ◽  
Sylvie Cranenbrouck ◽  
...  

2005 ◽  
Vol 62 (4) ◽  
pp. 389-394 ◽  
Author(s):  
Sara Adrián López de Andrade ◽  
Renato Atílio Jorge ◽  
Adriana Parada Dias da Silveira

The effect of cadmium (Cd) on mycorrhizal association and on shoot and root Cd concentration was investigated in jackbean plants under hydroponic conditions. The treatments consisted of the inoculation of three different species of arbuscular mycorrhizal fungi (AMF), Glomus etunicatum, G. intraradices and G. macrocarpum, and a non-inoculated control, two Cd (0 and 5 µmol L-1) and two P (1 and 10 mg L-1) levels in the nutrient solution. Mycorrhizal colonization, length of AMF extraradical mycelium, guaiacol peroxidase activity in roots, plant growth and root and shoot Cd and P concentrations were determined. Mycorrhizal status did not promote jackbean growth but in most of the cases mycorrhization increased root and shoot Cd concentrations. Cd ions were accumulated mainly in roots and only small amounts were translocated to the shoot. Cd addition did not affect root colonization by AMF but the AM extraradical mycelium (ERM) was sensitive to the added Cd. ERM length was reduced by 25% in the presence of Cd. This reduction was more pronounced under conditions of low P concentration. Also at this P concentration, Cd addition decreased guaiacol peroxidase activity in non-mycorrhizal roots and in roots colonized by G. macrocarpum. However, mycorrhizal roots maintained lower values of peroxidase activity. G. etunicatum showed the best performance when associated to jackbean plants and it could be a promising association for phytoremediation of Cd- contaminated soil.


Sign in / Sign up

Export Citation Format

Share Document