scholarly journals Cadmium effect on the association of jackbean (Canavalia ensiformis) and arbuscular mycorrhizal fungi

2005 ◽  
Vol 62 (4) ◽  
pp. 389-394 ◽  
Author(s):  
Sara Adrián López de Andrade ◽  
Renato Atílio Jorge ◽  
Adriana Parada Dias da Silveira

The effect of cadmium (Cd) on mycorrhizal association and on shoot and root Cd concentration was investigated in jackbean plants under hydroponic conditions. The treatments consisted of the inoculation of three different species of arbuscular mycorrhizal fungi (AMF), Glomus etunicatum, G. intraradices and G. macrocarpum, and a non-inoculated control, two Cd (0 and 5 µmol L-1) and two P (1 and 10 mg L-1) levels in the nutrient solution. Mycorrhizal colonization, length of AMF extraradical mycelium, guaiacol peroxidase activity in roots, plant growth and root and shoot Cd and P concentrations were determined. Mycorrhizal status did not promote jackbean growth but in most of the cases mycorrhization increased root and shoot Cd concentrations. Cd ions were accumulated mainly in roots and only small amounts were translocated to the shoot. Cd addition did not affect root colonization by AMF but the AM extraradical mycelium (ERM) was sensitive to the added Cd. ERM length was reduced by 25% in the presence of Cd. This reduction was more pronounced under conditions of low P concentration. Also at this P concentration, Cd addition decreased guaiacol peroxidase activity in non-mycorrhizal roots and in roots colonized by G. macrocarpum. However, mycorrhizal roots maintained lower values of peroxidase activity. G. etunicatum showed the best performance when associated to jackbean plants and it could be a promising association for phytoremediation of Cd- contaminated soil.

2017 ◽  
Vol 57 (2) ◽  
pp. 173-184 ◽  
Author(s):  
Marieta Hristozkova ◽  
Maria Geneva ◽  
Ira Stancheva ◽  
Ivan Iliev ◽  
Concepción Azcón-Aguilar

AbstractPhysalis peruvianais one of the most promising tropical fruit plants because of its rapid growth, high yield, and nutritional quality. This study was designed to investigate plant development under heavy metal contamination (Cd, Pb) and responsiveness to arbuscular mycorrhizal fungi (AMF) colonization byRhizophagus clarumandClaroideoglomus claroideum. The antioxidant capacity, total lipid content and fatty acid profile in fruits, accumulation of Cd and Pb in different plant parts, plant dry biomass, and mycorrhizal colonization were determined. As a result of inoculation, a considerable reduction in Cd and Pb in the fruits was observed, compared with non-inoculated plants. The fruit number and dry weight increased in plants associated withC. claroideum.These plants also showed higher acid phosphatase activity, root protein accumulation and glomalin production. The type of antioxidant defense was AMF strain-dependent. Antioxidant activity and H2O2neutralization were enzymatic rather than non-enzymatic processes in the fruits ofC. claroideumplants compared with those forming an association withR. clarum. Mycorrhizal establishment changed the composition and concentration of fruits’ fatty acids. The ratio of unsaturated fatty acids was increased. With respect to the accumulation of bioactive compounds in golden berry the present findings are important for obtaining the optimum benefits of mycorrhizal association under unfavorable conditions.


2005 ◽  
Vol 71 (5) ◽  
pp. 2592-2599 ◽  
Author(s):  
Pål Axel Olsson ◽  
Ingrid M. van Aarle ◽  
Mayra E. Gavito ◽  
Per Bengtson ◽  
Göran Bengtsson

ABSTRACT The ubiquitous arbuscular mycorrhizal fungi consume significant amounts of plant assimilated C, but this C flow has been difficult to quantify. The neutral lipid fatty acid 16:1ω5 is a quantitative signature for most arbuscular mycorrhizal fungi in roots and soil. We measured carbon transfer from four plant species to the arbuscular mycorrhizal fungus Glomus intraradices by estimating 13C enrichment of 16:1ω5 and compared it with 13C enrichment of total root and mycelial C. Carbon allocation to mycelia was detected within 1 day in monoxenic arbuscular mycorrhizal root cultures labeled with [13C]glucose. The 13C enrichment of neutral lipid fatty acid 16:1ω5 extracted from roots increased from 0.14% 1 day after labeling to 2.2% 7 days after labeling. The colonized roots usually were more enriched for 13C in the arbuscular mycorrhizal fungal neutral lipid fatty acid 16:1ω5 than for the root specific neutral lipid fatty acid 18:2ω6,9. We labeled plant assimilates by using 13CO2 in whole-plant experiments. The extraradical mycelium often was more enriched for 13C than was the intraradical mycelium, suggesting rapid translocation of carbon to and more active growth by the extraradical mycelium. Since there was a good correlation between 13C enrichment in neutral lipid fatty acid 16:1ω5 and total 13C in extraradical mycelia in different systems (r 2 = 0.94), we propose that the total amount of labeled C in intraradical and extraradical mycelium can be calculated from the 13C enrichment of 16:1ω5. The method described enables evaluation of C flow from plants to arbuscular mycorrhizal fungi to be made without extraction, purification and identification of fungal mycelia.


2017 ◽  
Vol 109 (1) ◽  
pp. 79 ◽  
Author(s):  
Zahra Marzban ◽  
Elham Faryabi ◽  
Shahram Torabian

<p>In order to evaluate arbuscular mycorrhizal fungi and rhizobium bacteria effects on leaf nitrogen (N) and phosphorus (P) concentration and root characteristics of green bean and maize under intercropping, experiment was carried out in the research field of College of Agriculture, Payame Noor University of Azna, Lorestan, Iran. In experiment, sandy loam soil with pH 7.3 and EC 0.49 dS m<sup>-1</sup> was used.The treatments comprised three cropping systems (sole cropping of green bean and maize, and intercropping), and four inoculations (control, arbuscular mycorrhizal fungi, rhizobium and mix of arbuscular mycorrhizal fungi and rhizobium). The results showed that inoculation with rhizobium improved length, diameter, volume and area of green bean root.The highest of green bean N, P concentration and root dry mass were observed in sole culture of green bean inoculated with arbuscular mycorrhizal fungi. Moreover, root length, diameter, volume and area of maize increased by arbuscular mycorrhizal fungi, and total concentration of N and P enhanced with use of rhizobium in sole cropping. Although the usage of <em>Rhizobium </em>and AMF can be affected on increasing the root growth and nutrient uptake of crops, application of bacterium and fungi combination at the same time would not be suitable. Overall, intercropping of maize with green bean caused to increase of leaf N and P concentrations and root growth of maize.</p>


2018 ◽  
Vol 55 (1A) ◽  
pp. 1
Author(s):  
Dang Hoang Quyen

Arbuscular mycorrhizal fungi (AMF) have an important role in agriculture because of the benefits on plant and ecosystem. However, mycorrhizal association is affected by many factors such as vegetation and farming conditions. In this study, AMF system on soil and roots of coffee were investigated from two coffee farms with different cultivation method in Lam Dong Province, one was not applied fertilizer in 4 years and the other was conventional. The density, the type of mycorrhizal spore and fungal infection rate on coffee roots are different between two coffee farms. Based on morphology, there are 119 types of AMF spore in both coffee farms and most of them belongs to genera Acaulospora, Gigaspora, Entrophospora and Glomus. Spore types RE7, W6 and W1 belonged to Acaulospora and Y5 belonged to Entrophospora appeared in both farms. Besides, spore types B7, RE10, Yc, RE1 and Y1 were recorded in high density (1-4 spores /g soil). All of them were the potential strains for developing the VAM fertilizer specialized to coffee plantation.  


2021 ◽  
Vol 14 (1) ◽  
pp. 31
Author(s):  
Khachonphong Nopphakat ◽  
Phanthipha Runsaeng ◽  
Lompong Klinnawee

Flooding in rainfed lowlands greatly impairs the mutualistic relationship between indigenous arbuscular mycorrhizal fungi (AMF) and rice. In flooded soils, root colonization by AMF is arrested, but some AMF genera, defined as the core AMF, remain present. However, the core AMF in rainfed lowlands and their symbiotic roles remain unknown. Here, we showed that Acaulospora fungi were the core AMF in rice seedling roots of the Sangyod Muang Phatthalung (SMP) landrace rice variety grown in non-flooded and flooded paddy soils. Subsequently, indigenous Acaulospora spores were propagated by trap cultures using maize as the host plants. Therefore, to clarify the roles of cultured Acaulospora spores in a symbiotic partnership, the model japonica rice variety Nipponbare was grown in sterile soil inoculated with Acaulospora spores, and recolonized with a native microbial filtrate from the organic rice paddy soil. Our data demonstrated that the inoculation of Acaulospora spores in well-drained soil under a nutrient-sufficient condition for six weeks enabled 70 percent of the rice roots to be colonized by the fungi, leading to higher phosphate (Pi) accumulation in the mycorrhizal roots. Unexpectedly, the growth of rice seedlings was significantly suppressed by inoculation while photosynthetic parameters such as fractions of incoming light energy and relative chlorophyll content were unaltered. In the soil, the Acaulospora fungi increased soil phosphorus (P) availability by enhancing the secretion of acid phosphatase in the mycorrhizal roots. The findings of this work elucidate the symbiotic roles of the dominant Acaulospora fungi from lowland rice paddies.


2015 ◽  
Vol 50 (4) ◽  
pp. 313-321 ◽  
Author(s):  
Marco Aurélio Carbone Carneiro ◽  
Dorotéia Alves Ferreira ◽  
Edicarlos Damacena de Souza ◽  
Helder Barbosa Paulino ◽  
Orivaldo José Saggin Junior ◽  
...  

The objective of this work was to evaluate the spore density and diversity of arbuscular mycorrhizal fungi (AMF) in soil aggregates from fields of "murundus" (large mounds of soil) in areas converted and not converted to agriculture. The experiment was conducted in a completely randomized design with five replicates, in a 5x3 factorial arrangement: five areas and three aggregate classes (macro-, meso-, and microaggregates). The evaluated variables were: spore density and diversity of AMF, total glomalin, total organic carbon (TOC), total extraradical mycelium (TEM), and geometric mean diameter (GMD) of soil aggregates. A total of 21 AMF species was identified. Spore density varied from 29 to 606 spores per 50 mL of soil and was higher in microaggregates and in the area with 6 years of conversion to agriculture. Total glomalin was higher between murundus in all studied aggregate classes. The area with 6 years showed lower concentration of TOC in macroaggregates (8.6 g kg-1) and in microaggregates (10.1 g kg-1). TEM was greater at the top of the murundus in all aggregate classes. GMD increased with the conversion time to agriculture. The density and diversity of arbuscular mycorrhizal spores change with the conversion of fields of murundus into agriculture.


Mycorrhiza ◽  
2009 ◽  
Vol 19 (5) ◽  
pp. 347-356 ◽  
Author(s):  
Liesbeth Voets ◽  
Ivan Enrique de la Providencia ◽  
Kalyanne Fernandez ◽  
Marleen IJdo ◽  
Sylvie Cranenbrouck ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document