scholarly journals Investigation of Fast Atom Bombardment Mass Spectrometry of Arenediazonium Salts/Mechanism of Their Quasi-Molecular Ions

1991 ◽  
Vol 7 (02) ◽  
pp. 219-222
Author(s):  
Bian Ze-Liang ◽  
◽  
Zhang Qi-Yuan ◽  
Sun Xiang-Yu ◽  
Zhao Yao-Xing
1989 ◽  
Vol 67 (5) ◽  
pp. 910-920 ◽  
Author(s):  
M. J. Bertrand ◽  
V. Benham ◽  
R. St-Louis ◽  
M. J. Evans

The mass spectra of mononucleotides and their metal adducts Na, K, Mg, Ca, Ni, Co, Cu, and Zn of guanosine 5′-monophosphate (5′-GMP) as well as H, Na, and Mg of adenosine 5′-monophosphate (5′-AMP) and H and Ni of inosine 5′-monophosphate (5′-IMP) have been obtained in low concentrations of matrix in water using continuous-flow fast atom bombardment. The results indicate that this technique is suitable for the analysis of these complexes in aqueous media and yields spectra that are highly characteristic of the compounds analyzed. Parent-molecular ions and structurally significant fragment ions are observed for all compounds studied and the different binding sites for the metal on the nucleotides can be isolated from the fragment ions. Experimental parameters influencing the quality of the spectra such as flow rate, matrix concentration, matrix nature, and analyte concentration have been studied and optimized. For the thirteen compounds studied, it appears that continuous-flow FAB is superior to conventional FAB and that good quality spectra can be obtained with as little as 0.5% of added matrix thus minimizing spectral interferences. Keywords: continuous flow FAB, FAB MS, mass spectrometry, nucleotides, metal-nucleotides.


1988 ◽  
Vol 23 (8) ◽  
pp. 605-608 ◽  
Author(s):  
Hanna B. Ambroz ◽  
Keith R. Jennings ◽  
Terence J. Kemp

1994 ◽  
Vol 47 (2) ◽  
pp. 229 ◽  
Author(s):  
JW Perich ◽  
I Liepa ◽  
AL Chaffee ◽  
RB Johns

Positive and negative ion fast atom bombardment ( f.a.b .) mass spectrometry were found to be useful methods for the analysis and structural characterization of five Nα-(t- butoxycarbonyl )-O-( diorganylphosphono )-L- serines ( organyl = Ph, Et, Me, Bzl , But), especially in the case of the sensitive benzyl and t-butyl phosphono derivatives. Under positive ion operating conditions, high intensity pseudo-molecular ions were obtained in the f.a.b . mass spectra, and the fragmentation pathway of the phenyl, ethyl and methyl derivatives was established by parent/daughter linked scanning studies to involve (a) the two-step loss of the t- butoxycarbonyl group, (b) loss of the amino acid as the neutral fragment from the [MH]+, [MH-56]+, [MH-100]+ and [MH-146]+ ions by a four- centred β-elimination rearrangement, and (c) cleavage of the phosphono phenyl and ethyl groups from only the [(RO)2P(OH)2]+ and [NH=CHCH2PO3R2+H]+ fragments. Parent/daughter linked scanning studies of the benzyl derivative showed that the prominent fragmentation involved loss of the benzyl group as the tropylium ion and that the 'apparent' [MH-90]+ peak observed in its f.a.b. mass spectrum resulted from cleavage of the phosphono benzyl group in the matrix during the bombardment process. In the case of the t-butyl derivative, parent/daughter linked scanning studies showed that the prominent fragmentation involved successive 'in-flight' loss of the phosphono t-butyl groups as isobutene. Negative ion f.a.b. mass spectrometry of the five derivatives gave f.a.b. mass spectra which displayed distinct [M-H]- anions along with high intensity [M-H-R]- and [(RO)2PO2]- fragment anions, the f.a.b . mass spectrum of the t-butyl derivative containing an additional [M-H-But-But]- fragment anion. Parent/daughter linked scanning studies established that the majority of the observed fragment anions resulted from extensive fragmentation of the Boc -Ser(PO3R2)-OH derivatives in the matrix phase followed by sputtering of the resultant fragments into the gas phase. In addition, positive ion f.a.b . mass spectrometry was found to be useful for the analysis of a series of protected O-( diorganylphosphono ) seryl-containing dipeptides and tripeptides ( organyl = Ph, Et, Me, Bzl ). The obtained spectra showed that β-elimination fragmentation of the Ser(PO3R2) residue was more pronounced with the tripeptide series and indicated that there was increased sensitivity of the O-( diorganylphosphono ) seryl residue with replacement of the Boc group by an amino acyl residue at its N-terminus.


1984 ◽  
Vol 39 (11) ◽  
pp. 1548-1552 ◽  
Author(s):  
Lutz Grotjahn ◽  
Ludger Ernst

Abstract In the Fast Atom Bombardment (FAB) mass spectra of monomeric and dimeric corrinoids, exchange of metal-bound ligands against matrix particles is observed which leads to pseudo molecular ions. Negative ion FAB mass spectra in particular, give distinct information on the intact molecular units.


1999 ◽  
Vol 64 (8) ◽  
pp. 1357-1368 ◽  
Author(s):  
Enric Brillas ◽  
José Carrasco ◽  
Ramon Oliver ◽  
Francesc Estrany ◽  
Víctor Ruiz

The electropolymerization of 2,5-di(2-(thienyl)pyrrole) (SNS) on a Pt electrode from ethanolic solution with LiClO4 or LiCl as electrolyte has been studied by cyclic voltammetry (CV) and chronoamperometry (CA). In both media, a quasi-reversible process has been indicated by CV, reversing the scan at low oxidation potentials. Under these conditions, reducible positive charges formed in both oxidized polymers are compensated by the entrance of anions from solution. Elemental analysis reveals that polymers generated at a low oxidation potential by CA contain a 21.03% (w/w) of ClO4- or a 9.56% (w/w) of Cl-. The poly(SNS) doped with Cl- presents higher proportion of reducible positive charges, higher polymerization charge and lower productivity. A much higher electrical conductivity, however, has been found for the poly(SNS) doped with ClO4-. Both polymers are soluble in DMSO, acetone and methanol. The dimer, trimer, tetramer and pentamer have been detected as soluble and neutral linear oligomers by mass spectrometry-fast atom bombardment. The analysis of polymers by infrared spectroscopy confirms the predominant formation of linear molecules with α-α linkages between monomeric units. A condensation mechanism involving one-electron oxidation of all electrogenerated linear and neutral polymeric chains is proposed to explain the SNS electropolymerization.


1984 ◽  
Vol 259 (17) ◽  
pp. 10801-10806
Author(s):  
B W Gibson ◽  
W C Herlihy ◽  
T S Samy ◽  
K S Hahm ◽  
H Maeda ◽  
...  

1987 ◽  
Vol 262 (6) ◽  
pp. 2507-2513
Author(s):  
R. Yazdanparast ◽  
P.C. Andrews ◽  
D.L. Smith ◽  
J.E. Dixon

Sign in / Sign up

Export Citation Format

Share Document