scholarly journals In situ Synthesis of Reduced Graphene Oxide Supported Co Nanoparticles as Efficient Catalysts for Hydrogen Generation from NH3BH3

2014 ◽  
Vol 30 (6) ◽  
pp. 1180-1186 ◽  
Author(s):  
YANG Yu-Wen ◽  
◽  
FENG Gang ◽  
LU Zhang-Hui ◽  
HU Na ◽  
...  
2018 ◽  
Vol 232 (3) ◽  
pp. 431-443 ◽  
Author(s):  
Xigang Du ◽  
Yonghua Duan ◽  
Jun Zhang ◽  
Gang Mi

AbstractCoMo nanoparticles (NPs) supported on reduced graphene oxide (RGO) were synthesized by a one-stepin situco-reduction of an aqueous solution of cobalt(II) chloride, sodium molybdate dihydrate and graphene oxide (GO) using NaBH4as the sole reductant under ambient conditions. The powder XRD, FTIR, EDS and TEM were employed to characterize the structure, size and composition of the CoMo/RGO catalysts. The as-synthesized Co0.9Mo0.1/RGO catalysts exhibited high catalytic activity for the hydrolytic dehydrogenation of ammonia borane (AB) at room temperature. The as-synthesized Co0.9Mo0.1/RGO nanocatalysts exhibited much higher catalytic activity than Co/RGO, Mo/RGO and the RGO-free Co0.9Mo0.1counterpart. Moreover, kinetic studies indicate that the catalytic hydrolysis of AB by Co0.9Mo0.1/RGO has first order kinetics with respect to the the catalyst concentration, but zero order kinetics with respect to the substrate concentration. The Co0.9Mo0.1/RGO catalyst has a turnover frequency (TOF) of 15.8 mol H2·(mol·Co0.9Mo0.1/RGO)−1·min−1at 25°C. Furthermore, the Co0.9Mo0.1/RGO show good recyclability for hydrogen generation from an aqueous solution of AB, which enables the practical reuse of the catalysts. Hence, this general method can be easily extended to the facile preparation of other RGO-based metallic systems.


RSC Advances ◽  
2017 ◽  
Vol 7 (51) ◽  
pp. 32310-32315 ◽  
Author(s):  
Ya Chen ◽  
Ling Wang ◽  
Yanan Zhai ◽  
Heyin Chen ◽  
Yibo Dou ◽  
...  

A composite material of Pd–Ni nanoparticles supported on reduced graphene oxide (Pd–Ni/rGO) has been synthesised via an in situ reduction of PdO/Ni(OH)2 nanoparticles on GO.


ACS Omega ◽  
2020 ◽  
Vol 5 (49) ◽  
pp. 31535-31542
Author(s):  
Weijun Miao ◽  
Feng Wu ◽  
Shiman Zhou ◽  
Guibin Yao ◽  
Yiguo Li ◽  
...  

2020 ◽  
Vol 59 (1) ◽  
pp. 477-487 ◽  
Author(s):  
Zhuang Liu ◽  
Haiyang Fu ◽  
Bo Gao ◽  
Yixuan Wang ◽  
Kui Li ◽  
...  

AbstractThis paper studies in-situ synthesis of Fe2O3/reduced graphene oxide (rGO) anode materials by different hydrothermal process.Scanning Electron Microscopy (SEM) analysis has found that different processes can control the morphology of graphene and Fe2O3. The morphologies of Fe2O3 prepared by the hydrothermal in-situ and oleic acid-assisted hydrothermal in-situ methods are mainly composed of fine spheres, while PVP assists The thermal in-situ law presents porous ellipsoids. Graphene exhibits typical folds and small lumps. X-ray diffraction analysis (XRD) analysis results show that Fe2O3/reduced graphene oxide (rGO) is generated in different ways. Also, the material has good crystallinity, and the crystal form of the iron oxide has not been changed after adding GO. It has been reduced, and a characteristic peak appears around 25°, indicating that a large amount of reduced graphene exists. The results of the electrochemical performance tests have found that the active materials prepared in different processes have different effects on the cycle performance of lithium ion batteries. By comprehensive comparison for these three processes, the electro-chemical performance of the Fe2O3/rGO prepared by the oleic acid-assisted hydrothermal method is best.


2021 ◽  
pp. 004051752199547
Author(s):  
Min Hou ◽  
Xinghua Hong ◽  
Yanjun Tang ◽  
Zimin Jin ◽  
Chengyan Zhu ◽  
...  

Functionalized knitted fabric, as a kind of flexible, wearable, and waterproof material capable of conductivity, sensitivity and outstanding hydrophobicity, is valuable for multi-field applications. Herein, the reduced graphene oxide (RGO)-coated knitted fabric (polyester/spandex blended) is prepared, which involves the use of graphite oxide (GO) by modified Hummers method and in-situ chemical reduction with hydrazine hydrate. The treated fabric exhibits a high electrical conductivity (202.09 S/cm) and an outstanding hydrophobicity (140°). The outstanding hydrophobicity is associated with the morphology of the fabric and fiber with reference to pseudo-infiltration. These properties can withstand repeated bending and washing without serious deterioration, maintaining good electrical conductivity (35.70 S/cm) and contact angle (119.39°) after eight standard washing cycles. The material, which has RGO architecture and continuous loop mesh structure, can find wide use in smart garment applications.


Sign in / Sign up

Export Citation Format

Share Document