scholarly journals Association of genetic variants with coronary artery disease and ischemic stroke in a longitudinal population-based genetic epidemiological study

2015 ◽  
Vol 3 (3) ◽  
pp. 413-419 ◽  
Author(s):  
YOSHIJI YAMADA ◽  
KOTA MATSUI ◽  
ICHIRO TAKEUCHI ◽  
TETSUO FUJIMAKI
2018 ◽  
Author(s):  
Matthew D. Krause ◽  
Ru-Ting Huang ◽  
David Wu ◽  
Tzu-Pin Shentu ◽  
Devin L. Harrison ◽  
...  

AbstractBiomechanical cues dynamically control major cellular processes but whether genetic variants actively participate in mechano-sensing mechanisms remains unexplored. Vascular homeostasis is tightly regulated by hemodynamics. Exposure to disturbed blood flow at arterial sites of branching and bifurcation causes constitutive activation of vascular endothelium contributing to atherosclerosis, the major cause of coronary artery disease (CAD) and ischemic stroke (IS). Conversely, unidirectional flow promotes quiescent endothelium. Genome-wide association studies have identified chromosome 1p32.2 as one of the most strongly associated loci with CAD/IS; however, the causal mechanism related to this locus remains unknown. Employing statistical analyses, ATAC-seq, and H3K27ac/H3K4me2 ChIP-Seq in human aortic endothelium (HAEC), our results demonstrate that rs17114036, a common noncoding polymorphism at the 1p32.2, is located in an endothelial enhancer dynamically regulated by hemodynamics. CRISPR/Cas9-based genome editing shows that rs17114036-containing region promotes endothelial quiescence under unidirectional flow by regulating phospholipid phosphatase 3 (PLPP3). Chromatin accessibility quantitative trait locus mapping using HAECs from 56 donors, allelic imbalance assay from 7 donors, and luciferase assays further demonstrate that CAD/IS protective allele at rs17114036 in PLPP3 intron 5 confers an increased endothelial enhancer activity. ChIPPCR and luciferase assays show that CAD/IS protective allele at rs17114036 creates a binding site for transcription factor Krüppel-like factor 2, which increases the enhancer activity under unidirectional flow. These results demonstrate for the first time that a human single-nucleotide polymorphism contributes to critical endothelial mechanotransduction mechanisms and suggest that human haplotypes and related cisregulatory elements provide a previously unappreciated layer of regulatory control in cellular mechano-sensing mechanisms.Significance StatementBiomechanical stimuli control major cellular functions and play critical roles in the pathogenesis of diverse human diseases. Although recent studies have implicated genetic variation in regulating key biological processes, whether human genetic variants contribute to the cellular mechano-sensing mechanisms remains unclear. This study provides the first line of evidence supporting an underappreciated role of genetic predisposition in cellular mechanotransduction mechanisms. Employing epigenomic profiling, genome-editing, and latest human genetics approaches, our data demonstrate that rs17114036, a common noncoding polymorphism implicated in coronary artery disease and ischemic stroke by genome-wide association studies, dynamically regulates endothelial responses to blood flow (hemodynamics) related to atherosclerosis via regulation of an intronic enhancer. The results provide new molecular insights linking disease-associated genetic variants to cellular mechanobiology.


Author(s):  
Martin Bahls ◽  
Michael F. Leitzmann ◽  
André Karch ◽  
Alexander Teumer ◽  
Marcus Dörr ◽  
...  

Abstract Aims Observational evidence suggests that physical activity (PA) is inversely and sedentarism positively related with cardiovascular disease risk. We performed a two-sample Mendelian randomization (MR) analysis to examine whether genetically predicted PA and sedentary behavior are related to coronary artery disease, myocardial infarction, and ischemic stroke. Methods and results We used single nucleotide polymorphisms (SNPs) associated with self-reported moderate to vigorous PA (n = 17), accelerometer based PA (n = 7) and accelerometer fraction of accelerations > 425 milli-gravities (n = 7) as well as sedentary behavior (n = 6) in the UK Biobank as instrumental variables in a two sample MR approach to assess whether these exposures are related to coronary artery disease and myocardial infarction in the CARDIoGRAMplusC4D genome-wide association study (GWAS) or ischemic stroke in the MEGASTROKE GWAS. The study population included 42,096 cases of coronary artery disease (99,121 controls), 27,509 cases of myocardial infarction (99,121 controls), and 34,217 cases of ischemic stroke (404,630 controls). We found no associations between genetically predicted self-reported moderate to vigorous PA, accelerometer-based PA or accelerometer fraction of accelerations > 425 milli-gravities as well as sedentary behavior with coronary artery disease, myocardial infarction, and ischemic stroke. Conclusions These results do not support a causal relationship between PA and sedentary behavior with risk of coronary artery disease, myocardial infarction, and ischemic stroke. Hence, previous observational studies may have been biased. Graphic abstract


2010 ◽  
Vol 30 (11) ◽  
pp. 2264-2276 ◽  
Author(s):  
Dawn M. Waterworth ◽  
Sally L. Ricketts ◽  
Kijoung Song ◽  
Li Chen ◽  
Jing Hua Zhao ◽  
...  

Author(s):  
Igrid García‐González ◽  
Gerardo Pérez‐Mendoza ◽  
Alberto Solís‐Cárdenas ◽  
Jorge Flores‐Ocampo ◽  
Luis Fernando Herrera‐Sánchez ◽  
...  

2018 ◽  
Vol 115 (48) ◽  
pp. E11349-E11358 ◽  
Author(s):  
Matthew D. Krause ◽  
Ru-Ting Huang ◽  
David Wu ◽  
Tzu-Pin Shentu ◽  
Devin L. Harrison ◽  
...  

Biomechanical cues dynamically control major cellular processes, but whether genetic variants actively participate in mechanosensing mechanisms remains unexplored. Vascular homeostasis is tightly regulated by hemodynamics. Exposure to disturbed blood flow at arterial sites of branching and bifurcation causes constitutive activation of vascular endothelium contributing to atherosclerosis, the major cause of coronary artery disease (CAD) and ischemic stroke (IS). Conversely, unidirectional flow promotes quiescent endothelium. Genome-wide association studies (GWAS) have identified chromosome 1p32.2 as strongly associated with CAD/IS; however, the causal mechanism related to this locus remains unknown. Using statistical analyses, assay of transposase accessible chromatin with whole-genome sequencing (ATAC-seq), H3K27ac/H3K4me2 ChIP with whole-genome sequencing (ChIP-seq), and CRISPR interference in human aortic endothelial cells (HAECs), our results demonstrate that rs17114036, a common noncoding polymorphism at 1p32.2, is located in an endothelial enhancer dynamically regulated by hemodynamics. CRISPR-Cas9–based genome editing shows that rs17114036-containing region promotes endothelial quiescence under unidirectional shear stress by regulating phospholipid phosphatase 3 (PLPP3). Chromatin accessibility quantitative trait locus (caQTL) mapping using HAECs from 56 donors, allelic imbalance assay from 7 donors, and luciferase assays demonstrate that CAD/IS-protective allele at rs17114036 in PLPP3 intron 5 confers increased endothelial enhancer activity. ChIP-PCR and luciferase assays show that CAD/IS-protective allele at rs17114036 creates a binding site for transcription factor Krüppel-like factor 2 (KLF2), which increases the enhancer activity under unidirectional flow. These results demonstrate that a human SNP contributes to critical endothelial mechanotransduction mechanisms and suggest that human haplotypes and related cis-regulatory elements provide a previously unappreciated layer of regulatory control in cellular mechanosensing mechanisms.


2015 ◽  
Vol 66 (16) ◽  
pp. C268 ◽  
Author(s):  
Rongjun Nie ◽  
Tao Guo ◽  
Xiaoli Cao ◽  
Wuxian Chen ◽  
Jinzhen Wu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document