scholarly journals Overexpression of mimecan in human aortic smooth muscle cells inhibits cell proliferation and enhances apoptosis and migration

2015 ◽  
Vol 10 (1) ◽  
pp. 187-192 ◽  
Author(s):  
HUI-JIE ZHANG ◽  
JING WANG ◽  
HUI-FANG LIU ◽  
XIAO-NA ZHANG ◽  
MING ZHAN ◽  
...  
2018 ◽  
Vol 25 (1_suppl) ◽  
pp. 42-50 ◽  
Author(s):  
Anna Chiarini ◽  
Francesco Onorati ◽  
Maddalena Marconi ◽  
Alessandra Pasquali ◽  
Cristina Patuzzo ◽  
...  

Background Sporadic non-syndromic thoracic aortic aneurysms (SNSTAAs) are less well understood than familial non-syndromic or syndromic ones. The study aimed at defining the peculiar morphologic and molecular changes occurring in the media layer of SNSTAAs. Design This study was based on a single centre design. Methods Media layer samples taken from seven carefully selected SNSTAAs and seven reference patients (controls) were investigated via quantitative polymerase chain reaction, proteomics-bioinformatics, immunoblotting, quantitative histology, and immunohistochemistry/immunofluorescence. Results In SNSTAAs media, aortic smooth muscle cells numbers were halved due to an apoptotic process coupled with a negligible cell proliferation. Cystathionine γ-lyase was diffusely up-regulated. Surviving aortic smooth muscle cells exhibited diverging phenotypes: in inner- and outer-media contractile cells prevailed, having higher contents of smooth-muscle-α-actin holoprotein (45-kDa) and of caspase-3-cleaved smooth-muscle-α-actin 25-kDa fragments; in mid-media, aortic smooth muscle cells exhibited a synthetic/secretor phenotype, down-regulating vimentin, but up-regulating glial fibrillary acidic protein, trans-Golgi network 46 protein, Jagged1 (172-kDa) holoprotein, and Jagged1’s receptor Notch1. Extracellular soluble Jagged1 (42-kDa) fragments accumulated. Conclusions In SNSTAAs, there is a relentless aortic smooth muscle cells attrition caused by the up-regulated cystathionine γ-lyase. In mid-media, synthetic/secretor aortic smooth muscle cells intensify Jagged1/NOTCH1 signalling in the attempt to counterbalance the weakened aortic wall, due to aortic smooth muscle cells net loss and mechanical stress. Synthetic/secretor aortic smooth muscle cells are apoptosis-prone, and the accruing thrombin-cleaved Jagged1 fragments counteract the otherwise useful effects of Jagged1/NOTCH1 signalling, thus hampering tissue homeostasis/remodelling, and aortic smooth muscle cells adhesion, differentiation, and migration.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Wenhui Gao ◽  
Rong Li ◽  
Jingjing Yu ◽  
Xijie He ◽  
Duo Xu ◽  
...  

Abstract Background SCIRT has been characterized as a key player in cancer biology, while its role in other human diseases is unclear. This study explored its role in atherosclerosis, with a specific focus on its interaction with SCIRT and miR-146a. Methods The expression of SCIRT and miR-146a in atherosclerosis-affected tissues and healthy tissues from 56 atherosclerosis patients were analyzed by RT-qPCR. The expression of SCIRT in nuclear and cytoplasm samples was detected by RNA fractionation assay. The direct interaction between SCIRT and miR-146a was detected by RNA pull-down assay. SCIRT and miR-146a were overexpressed in human aortic smooth muscle cells (HAOSMCs) to study the crosstalk between them. The role of SCIRT and miR-146a in the proliferation of HAOSMCs was analyzed with BrdU assay. Results SCIRT was downregulated by atherosclerosis, while miR-146a was upregulated by atherosclerosis. SCIRT was detected in both cytoplasm and nuclear samples, and it directly interacted with miR-146a. In HAOSMCs, overexpression of SCIRT and miR-146a did not affect the expression of each other. Interestingly, SCIRT suppressed the proliferation of HAOSMCs and reduced the enhancing effects of miR-146a on cell proliferation. Conclusion Therefore, SCIRT is downregulated in atherosclerosis and it suppresses the proliferation of HAOSMCs by sponging miR-146a in cytoplasm.


Sign in / Sign up

Export Citation Format

Share Document