scholarly journals Effect of Huaier on the proliferation and apoptosis of human gastric cancer cells through modulation of the PI3K/AKT signaling pathway

2015 ◽  
Vol 10 (3) ◽  
pp. 1212-1218 ◽  
Author(s):  
HUA-XIA XIE ◽  
ZHI-YUAN XU ◽  
JIA-NING TANG ◽  
YI-AN DU ◽  
LING HUANG ◽  
...  
2020 ◽  
Vol Volume 13 ◽  
pp. 10995-11006
Author(s):  
Ya-Nan Sheng ◽  
Ying-Hua Luo ◽  
Shao-Bin Liu ◽  
Wan-Ting Xu ◽  
Yu Zhang ◽  
...  

Open Medicine ◽  
2019 ◽  
Vol 14 (1) ◽  
pp. 25-31 ◽  
Author(s):  
Sen Lin ◽  
Jianing Liu ◽  
Wen Jiang ◽  
Peng Wang ◽  
Chao Sun ◽  
...  

AbstractMethyltransferase-like 3 (METTL3) was originally known to be responsible for N6-methyladenosine (m6A) modification of mRNA. Recent studies have found that METTL3 plays important roles in a variety of tumors by regulating the translation of oncogenes. However, the functional and regulating mechanisms of METTL3 in human gastric cancer have not yet been understood. Here we knocked down METTL3 in human gastric cancer cell lines, AGS and MKN45, by using shRNA transfection. RT-qPCR assay and western blotting verified the effectiveness of RNA interference on mRNA and protein levels, respectively. Then we found that METTL3 knockdown inhibited cell proliferation, migration and invasion in AGS and MKN45 cells. Moreover, METTL3 knockdown decreased Bcl2 and increased Bax and active Caspase-3 in gastric cancer cells, which suggested the apoptotic pathway was activated. Mechanistic investigation suggested that METTL3 led to inactivation of the AKT signaling pathway in human gastric cancer cells, including decreased phosphorylation levels of AKT and expression of down-stream effectors p70S6K and Cyclin D1. In conclusion, our study reveals that down-regulation of METTL3 inhibits the proliferation and mobility of human gastric cancer cells and leads to inactivation of the AKT signaling pathway, suggesting that METTL3 may be a potential target for the treatment of human gastric cancer.


2018 ◽  
Vol 64 (5) ◽  
pp. 40 ◽  
Author(s):  
Jiming Han ◽  
Lu Zhang ◽  
Jing Zhang ◽  
Qiuyu Jiang ◽  
Dongdong Tong ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Linwen Zhu ◽  
Zhe Li ◽  
Xiuchong Yu ◽  
Yao Ruan ◽  
Yijing Shen ◽  
...  

Abstract Background Recently, tRNA-derived fragments (tRFs) have been shown to serve important biological functions. However, the role of tRFs in gastric cancer has not been fully elucidated. This study aimed to identify the tumor suppressor role of tRF-5026a (tRF-18-79MP9P04) in gastric cancer. Methods Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) was first used to detect tRF-5026a expression levels in gastric cancer tissues and patient plasma. Next, the relationship between tRF-5026a levels and clinicopathological features in gastric cancer patients was assessed. Cell lines with varying tRF-5026a levels were assessed by measuring tRF-5026a using qRT-PCR. After transfecting cell lines with a tRF-5026a mimic or inhibitor, cell proliferation, colony formation, migration, apoptosis, and cell cycle were evaluated. The expression levels of related proteins in the PTEN/PI3K/AKT pathway were also analyzed by Western blotting. Finally, the effect of tRF-5026a on tumor growth was tested using subcutaneous tumor models in nude mice. Results tRF-5026a was downregulated in gastric cancer patient tissues and plasma samples. tRF-5026a levels were closely related to tumor size, had a certain diagnostic value, and could be used to predict overall survival. tRF-5026a was also downregulated in gastric cancer cell lines. tRF-5026a inhibited the proliferation, migration, and cell cycle progression of gastric cancer cells by regulating the PTEN/PI3K/AKT signaling pathway. Animal experiments showed that upregulation of tRF-5026a effectively inhibited tumor growth. Conclusions tRF-5026a (tRF-18-79MP9P04) is a promising biomarker for gastric cancer diagnostics and has tumor suppressor effects mediated through the PTEN/PI3K/AKT signaling pathway.


Sign in / Sign up

Export Citation Format

Share Document