scholarly journals NLRP3 inflammasome activation in gestational diabetes mellitus placentas is associated with hydrogen sulfide synthetase deficiency

2021 ◽  
Vol 23 (1) ◽  
Author(s):  
Wei Wu ◽  
Qing-Ying Tan ◽  
Fang-Fang Xi ◽  
Yun Ruan ◽  
Jing Wang ◽  
...  
2017 ◽  
Vol 293 (7) ◽  
pp. 2546-2557 ◽  
Author(s):  
Mariela Castelblanco ◽  
Jérôme Lugrin ◽  
Driss Ehirchiou ◽  
Sonia Nasi ◽  
Isao Ishii ◽  
...  

2017 ◽  
Vol 42 (4) ◽  
pp. 1635-1644 ◽  
Author(s):  
Zhu-lin Luo ◽  
Jian-dong Ren ◽  
Zhu Huang ◽  
Tao Wang ◽  
Ke Xiang ◽  
...  

Background: This study aimed to investigate whether exogenous hydrogen sulfide (H2S) can protect the RAW264.7 macrophages against the inflammation induced by free fatty acids (FFA) by blunting NLRP3 inflammasome activation via a specific TLR4/NF-κB pathway. Methods: RAW264.7 macrophages were exposed to increasing concentrations of FFA for up to 3 days to induce FFA-induced inflammation. The cells were pretreated with NaHS (a donor of H2S) before exposure to FFA. Cell viability, cell apoptosis, TLR4, NF-κB, NLRP3 inflammasome, IL-1β, IL-18 and cleaved caspase-3 expression were measured by a combination of MTT assay, ELISA, and immunoblotting. Results: H2S attenuated FFA-induced cell apoptosis, and reduced the expression of NLRP3, ASC, pro-caspase-1, caspase-1, IL- 1β, IL-18 and caspase-3. In addition, H2S inhibited the FFA-induced activation of TLR4 and NF-κB. Furthermore, NLRP3 inflammasome activation was regulated by the TLR4 and NF-κB pathway. Conclusion: The present study demonstrated for the first time that H2S appears to suppress FFA-induced macrophage inflammation and apoptosis by inhibiting the TLR4/ NF-κB pathway and its downstream NLRP3 inflammasome activation. Thus H2S might possess potential in the treatment of diseases resulting from FFA overload like insulin resistance and type diabetes.


2020 ◽  
Vol 2020 ◽  
pp. 1-16 ◽  
Author(s):  
Zhenning Liu ◽  
Xiaofeng Wang ◽  
Lei Li ◽  
Guigui Wei ◽  
Min Zhao

In addition to the lung, the liver is considered another major target for paraquat (PQ) poisoning. Hydrogen sulfide (H2S) has been demonstrated to be effective in the inhibition of oxidative stress and inflammation. The aim of this study was to investigate the protective effect of exogenous H2S against PQ-induced acute liver injury. The acute liver injury model was established by a single intraperitoneal injection of PQ, evidenced by histological alteration and elevated serum aminotransferase levels. Different doses of NaHS were administered intraperitoneally one hour before exposure to PQ. Analysis of the data shows that exogenous H2S attenuated the PQ-induced liver injury and oxidative stress in a dose-dependent manner. H2S significantly suppressed reactive oxygen species (ROS) generation and the elevation of malondialdehyde content while it increased the ratio of GSH/GSSG and levels of antioxidant enzymes including SOD, GSH-Px, HO-1, and NQO-1. When hepatocytes were subjected to PQ-induced oxidative stress, H2S markedly enhanced nuclear translocation of Nrf2 via S-sulfhydration of Keap1 and resulted in the increase in IDH2 activity by regulating S-sulfhydration of SIRT3. In addition, H2S significantly suppressed NLRP3 inflammasome activation and subsequent IL-1β excretion in PQ-induced acute liver injury. Moreover, H2S cannot reverse the decrease in SIRT3 and activation of the NLRP3 inflammasome caused by PQ in Nrf2-knockdown hepatocytes. In summary, H2S attenuated the PQ-induced acute liver injury by enhancing antioxidative capability, regulating mitochondrial function, and suppressing ROS-induced NLRP3 inflammasome activation. The antioxidative effect of H2S in PQ-induced liver injury can at least partly be attributed to the promotion of Nrf2-driven antioxidant enzymes via Keap1 S-sulfhydration and regulation of SIRT3/IDH2 signaling via Nrf2-dependent SIRT3 gene transcription as well as SIRT3 S-sulfhydration. Thus, H2S supplementation can form the basis for a promising novel therapeutic strategy for PQ-induced acute liver injury.


Placenta ◽  
2021 ◽  
Vol 112 ◽  
pp. e23
Author(s):  
Colm McElwain ◽  
Samprikta Manna ◽  
Andrea Musumeci ◽  
Fergus McCarthy ◽  
Cathal McCarthy

Sign in / Sign up

Export Citation Format

Share Document