scholarly journals Induction of β-catenin by the suppression of signal regulatory protein α1 in K562 cells

Author(s):  
Takahashi
Blood ◽  
1999 ◽  
Vol 94 (6) ◽  
pp. 2128-2134 ◽  
Author(s):  
Abraham M. Konijn ◽  
Hava Glickstein ◽  
Boris Vaisman ◽  
Esther G. Meyron-Holtz ◽  
Itzchak N. Slotki ◽  
...  

Abstract The labile iron pool (LIP) harbors the metabolically active and regulatory forms of cellular iron. We assessed the role of intracellular ferritin in the maintenance of intracellular LIP levels. Treating K562 cells with the permeant chelator isonicotinoyl salicylaldehyde hydrazone reduced the LIP from 0.8 to 0.2 μmol/L, as monitored by the metalo-sensing probe calcein. When cells were reincubated in serum-free and chelator-free medium, the LIP partially recovered in a complex pattern. The first component of the LIP to reappear was relatively small and occurred within 1 hour, whereas the second was larger and relatively slow to occur, paralleling the decline in intracellular ferritin level (t½= 8 hours). Protease inhibitors such as leupeptin suppressed both the changes in ferritin levels and cellular LIP recovery after chelation. The changes in the LIP were also inversely reflected in the activity of iron regulatory protein (IRP). The 2 ferritin subunits, H and L, behaved qualitatively similarly in response to long-term treatments with the iron chelator deferoxamine, although L-ferritin declined more rapidly, resulting in a 4-fold higher H/L-ferritin ratio. The decline in L-ferritin, but not H-ferritin, was partially attenuated by the lysosomotrophic agent, chloroquine; on the other hand, antiproteases inhibited the degradation of both subunits to the same extent. These findings indicate that, after acute LIP depletion with fast-acting chelators, iron can be mobilized into the LIP from intracellular sources. The underlying mechanisms can be kinetically analyzed into components associated with fast release from accessible cellular sources and slow release from cytosolic ferritin via proteolysis. Because these iron forms are known to be redox-active, our studies are important for understanding the biological effects of cellular iron chelation.


Blood ◽  
1996 ◽  
Vol 88 (3) ◽  
pp. 1070-1078 ◽  
Author(s):  
SP Rafferty ◽  
JB Domachowske ◽  
HL Malech

Recent studies have indicated that nitric oxide may affect iron metabolism through disruption of the iron-sulfur complex of iron regulatory protein-1, a translational regulator. In the present study, we report that heterologous expression of murine macrophage nitric oxide synthase (NOS-2) in the human erythroleukemic K562 cell line results in constitutive production of nitric oxide associated with inhibition of hemoglobin expression. K562 cells were transfected with an episomally-maintained, hygromycin-selectable expression vector bearing the coding region of NOS-2. Constitutive NOS expression was detected by Western blotting of cell lysates and by the accumulation of nitrite in the culture media. Although NOS-transfected cells grew more slowly than control cells, they were able to maintain constitutive expression of NOS and production of nitric oxide for more than 1 month following transfection. The hemoglobin content of NOS-transfected K562 cells was less than one-fifth that of control cells, but increased markedly if NOS inhibitor was included in the culture media. The nitric oxide-mediated inhibition of hemoglobin expression was reversed by supplementing the culture media with 20 mumol/L hemin or 0.5 mmol/L 5- amino-levulinate, indicating that nitric oxide did not directly inhibit hemoglobin synthesis, but likely acted on a step in heme synthesis. mRNA levels for globin and erythroid aminolevulinic acid synthase (eALAS) were the same in both NOS-transfected and control cells. Our observations indicate that hemoglobin expression is inhibited by nitric oxide in NOS-transfected K562 cells by posttranscriptional repression of eALAS, the first enzyme of the heme biosynthetic pathway. The most likely mechanism is a nitric oxide-mediated translational repression of eALAS, as was recently demonstrated for ferritin synthesis. These observations further illustrate the potential for endogenously produced nitric oxide to regulate cellular posttranscriptional events. In particular, our observations may be relevant to the role of nitric oxide in anemia and lowered blood hemoglobin concentrations that are associated with chronic infections, such as tuberculosis or parasitic disease.


Blood ◽  
1996 ◽  
Vol 88 (3) ◽  
pp. 1070-1078 ◽  
Author(s):  
SP Rafferty ◽  
JB Domachowske ◽  
HL Malech

Abstract Recent studies have indicated that nitric oxide may affect iron metabolism through disruption of the iron-sulfur complex of iron regulatory protein-1, a translational regulator. In the present study, we report that heterologous expression of murine macrophage nitric oxide synthase (NOS-2) in the human erythroleukemic K562 cell line results in constitutive production of nitric oxide associated with inhibition of hemoglobin expression. K562 cells were transfected with an episomally-maintained, hygromycin-selectable expression vector bearing the coding region of NOS-2. Constitutive NOS expression was detected by Western blotting of cell lysates and by the accumulation of nitrite in the culture media. Although NOS-transfected cells grew more slowly than control cells, they were able to maintain constitutive expression of NOS and production of nitric oxide for more than 1 month following transfection. The hemoglobin content of NOS-transfected K562 cells was less than one-fifth that of control cells, but increased markedly if NOS inhibitor was included in the culture media. The nitric oxide-mediated inhibition of hemoglobin expression was reversed by supplementing the culture media with 20 mumol/L hemin or 0.5 mmol/L 5- amino-levulinate, indicating that nitric oxide did not directly inhibit hemoglobin synthesis, but likely acted on a step in heme synthesis. mRNA levels for globin and erythroid aminolevulinic acid synthase (eALAS) were the same in both NOS-transfected and control cells. Our observations indicate that hemoglobin expression is inhibited by nitric oxide in NOS-transfected K562 cells by posttranscriptional repression of eALAS, the first enzyme of the heme biosynthetic pathway. The most likely mechanism is a nitric oxide-mediated translational repression of eALAS, as was recently demonstrated for ferritin synthesis. These observations further illustrate the potential for endogenously produced nitric oxide to regulate cellular posttranscriptional events. In particular, our observations may be relevant to the role of nitric oxide in anemia and lowered blood hemoglobin concentrations that are associated with chronic infections, such as tuberculosis or parasitic disease.


1999 ◽  
Vol 19 (6) ◽  
pp. 4182-4190 ◽  
Author(s):  
Melissa L. Holmes ◽  
John D. Haley ◽  
Loretta Cerruti ◽  
Wen-lai Zhou ◽  
Helen Zogos ◽  
...  

ABSTRACT A fungus-derived compound (OSI-2040) which induces fetal globin expression in the absence of erythroid cell differentiation was identified in a high-throughput drug discovery program. We utilized this compound to isolate γ-globin regulatory genes that are differentially expressed in OSI-2040-induced and uninduced cells in the human erythroleukemia cell line K562. Representational difference analysis (RDA) of cDNA revealed several genes that were significantly up- or down-regulated in OSI-2040-induced cells. One gene whose expression was markedly enhanced was the gene for the helix-loop-helix (HLH) transcription factor Id2. Southern analysis of RDA amplicons demonstrated progressive enrichment of Id2 with each successive subtraction of uninduced cDNA from induced cDNA. Northern analysis of OSI-2040-induced K562 cells confirmed that Id2 expression was directly up-regulated coordinately with γ-globin. Analysis of other inducers of fetal globin demonstrated up-regulation of Id2 with sodium butyrate but not with hemin. Retrovirus-mediated overexpression of Id2 in K562 cells reproduced the enhancement of endogenous globin expression observed with OSI-2040 induction. Functional assays demonstrated that an E-box element in hypersensitivity site 2 is required for Id2-dependent enhancement of γ-promoter activity. Protein binding studies suggest that alterations in E-box site occupancy by basic HLH proteins may influence this activity, thus expanding the potential role of these factors in globin gene regulation.


Blood ◽  
1999 ◽  
Vol 94 (6) ◽  
pp. 2128-2134 ◽  
Author(s):  
Abraham M. Konijn ◽  
Hava Glickstein ◽  
Boris Vaisman ◽  
Esther G. Meyron-Holtz ◽  
Itzchak N. Slotki ◽  
...  

The labile iron pool (LIP) harbors the metabolically active and regulatory forms of cellular iron. We assessed the role of intracellular ferritin in the maintenance of intracellular LIP levels. Treating K562 cells with the permeant chelator isonicotinoyl salicylaldehyde hydrazone reduced the LIP from 0.8 to 0.2 μmol/L, as monitored by the metalo-sensing probe calcein. When cells were reincubated in serum-free and chelator-free medium, the LIP partially recovered in a complex pattern. The first component of the LIP to reappear was relatively small and occurred within 1 hour, whereas the second was larger and relatively slow to occur, paralleling the decline in intracellular ferritin level (t½= 8 hours). Protease inhibitors such as leupeptin suppressed both the changes in ferritin levels and cellular LIP recovery after chelation. The changes in the LIP were also inversely reflected in the activity of iron regulatory protein (IRP). The 2 ferritin subunits, H and L, behaved qualitatively similarly in response to long-term treatments with the iron chelator deferoxamine, although L-ferritin declined more rapidly, resulting in a 4-fold higher H/L-ferritin ratio. The decline in L-ferritin, but not H-ferritin, was partially attenuated by the lysosomotrophic agent, chloroquine; on the other hand, antiproteases inhibited the degradation of both subunits to the same extent. These findings indicate that, after acute LIP depletion with fast-acting chelators, iron can be mobilized into the LIP from intracellular sources. The underlying mechanisms can be kinetically analyzed into components associated with fast release from accessible cellular sources and slow release from cytosolic ferritin via proteolysis. Because these iron forms are known to be redox-active, our studies are important for understanding the biological effects of cellular iron chelation.


Praxis ◽  
2008 ◽  
Vol 98 (1) ◽  
pp. 31-34
Author(s):  
Oestmann ◽  
Mullis ◽  
Stanga

Wir berichten über eine heute 34-jährige Frau, die im Alter von 6 Monaten wegen rezidivierendem Erbrechen hospitalisiert werden musste. Als Ursache fand sich eine Nebenniereninsuffizienz mit Verminderung sämtlicher Hormone der Steroidhormonbiosynthese. Die weiteren Abklärungen ergaben bei dem phänotypisch weiblichen Säugling eine lipoide kongenitale adrenale Hyperplasie mit 46,XY DSD. 24 Jahre später konnte in der DNS-Sequenzanalyse ein homozygoter, in der Schweiz vorkommender Basenaustausch des steroidogenic acute regulatory protein-Gens gefunden werden, welcher zu einem Aminosäurenaustausch Leucin 260 Prolin (L260P) führt.


2020 ◽  
Vol 85 ◽  
pp. 47-58
Author(s):  
Y Jiang ◽  
Y Liu

Various studies have observed that increased nutrient supply promotes the growth of bloom-forming cyanobacteria, but only a limited number of studies have investigated the influence of increased nutrient supply on bloom-forming cyanobacteria at the proteomic level. We investigated the cellular and proteomic responses of Microcystis aeruginosa to elevated nitrogen and phosphorus supply. Increased supply of both nutrients significantly promoted the growth of M. aeruginosa and the synthesis of chlorophyll a, protein, and microcystins. The release of microcystins and the synthesis of polysaccharides negatively correlated with the growth of M. aeruginosa under high nutrient levels. Overexpressed proteins related to photosynthesis, and amino acid synthesis, were responsible for the stimulatory effects of increased nutrient supply in M. aeruginosa. Increased nitrogen supply directly promoted cyanobacterial growth by inducing the overexpression of the cell division regulatory protein FtsZ. NtcA, that regulates gene transcription related to both nitrogen assimilation and microcystin synthesis, was overexpressed under the high nitrogen condition, which consequently induced overexpression of 2 microcystin synthetases (McyC and McyF) and promoted microcystin synthesis. Elevated nitrogen supply induced the overexpression of proteins involved in gas vesicle organization (GvpC and GvpW), which may increase the buoyancy of M. aeruginosa. Increased phosphorus level indirectly affected growth and the synthesis of cellular substances in M. aeruginosa through the mediation of differentially expressed proteins related to carbon and phosphorus metabolism. This study provides a comprehensive description of changes in the proteome of M. aeruginosa in response to an increased supply of 2 key nutrients.


1988 ◽  
Vol 117 (4_Suppl) ◽  
pp. S70-S71
Author(s):  
M. SCHUMACHER ◽  
J. LUDOLPH ◽  
F. LEIDENBERGER

Sign in / Sign up

Export Citation Format

Share Document