scholarly journals DPY30 is required for the enhanced proliferation, motility and epithelial-mesenchymal transition of epithelial ovarian cancer cells

Author(s):  
Lili Zhang ◽  
Shuguang Zhang ◽  
Aihua Li ◽  
Anqi Zhang ◽  
Shiqian Zhang ◽  
...  
2015 ◽  
Vol 13 (1) ◽  
pp. 837-844
Author(s):  
LETIAN ZHANG ◽  
AJIN HU ◽  
MENGRUI LI ◽  
HONGQUAN ZHANG ◽  
CAIXIA REN ◽  
...  

Cells ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 237
Author(s):  
Zeinab Dehghani-Ghobadi ◽  
Shahrzad Sheikh Hasani ◽  
Ehsan Arefian ◽  
Ghamartaj Hossein

In this paper, we investigate whether Wnt5A is associated with the TGF-β1/Smad2/3 and Hippo-YAP1/TAZ-TEAD pathways, implicated in epithelial to mesenchymal transition (EMT) in epithelial ovarian cancer. We used 3D and 2D cultures of human epithelial ovarian cancer cell lines SKOV-3, OVCAR-3, CAOV-4, and different subtypes of human serous ovarian cancer compared to normal ovary specimens. Wnt5A showed a positive correlation with TAZ and TGFβ1 in high- and low-grade serous ovarian cancer specimens compared to borderline serous and normal ovaries. Silencing Wnt5A by siRNAs significantly decreased Smad2/3 activation and YAP1 expression and nuclear shuttling in ovarian cancer (OvCa) cells. Furthermore, Wnt5A was required for TGFβ1-induced cell migration and invasion. In addition, inhibition of YAP1 transcriptional activity by Verteporfin (VP) altered OvCa cell migration and invasion through decreased Wnt5A expression and inhibition of Smad2/3 activation, which was reverted in the presence of exogenous Wnt5A. We found that the activation of TGFβ1 and YAP1 nuclear shuttling was promoted by Wnt5A-induced integrin alpha v. Lastly, Wnt5A was implicated in activating human primary omental mesothelial cells and subsequent invasion of ovarian cancer cells. Together, we propose that Wnt5A could be a critical mediator of EMT-associated pathways.


Author(s):  
Hongwei Tan ◽  
Jin Qi ◽  
Guanghua Chu ◽  
Zhaoyang Liu

Tripartite motif 16 (TRIM16), a member of the RING B-box coiled-coil (RBCC)/tripartite motif (TRIM) protein family, has been shown to play a role in tumor development and progression. However, the role of TRIM16 in ovarian cancer has never been revealed. Thus, in this study, we investigated the roles and mechanisms of TRIM16 in ovarian cancer. Our results demonstrated that TRIM16 expression was low in ovarian cancer cell lines. In addition, overexpression of TRIM16 significantly inhibited the migration and invasion in vitro, as well as suppressed the epithelial‐mesenchymal transition (EMT) phenotype in ovarian cancer cells. Furthermore, overexpression of TRIM16 greatly inhibited the protein expression levels of Shh, Smo, Ptc, Gli-1, MMP2, and MMP9 in ovarian cancer cells. Taken together, these results strongly suggest that TRIM16 inhibits the migration and invasion via suppressing the Sonic hedgehog signaling pathway in ovarian cancer cells. Thus, TRIM16 may be a novel potential therapeutic target for ovarian cancer.


2018 ◽  
Vol 49 (5) ◽  
pp. 1766-1777 ◽  
Author(s):  
Jie Li ◽  
Songlin Zhang ◽  
Meili Pei ◽  
Lei Wu ◽  
Yanli Liu ◽  
...  

Background/Aims: Epithelial-mesenchymal transition (EMT) is one of the key mechanisms mediating cancer progression. Snail1 has a pivotal role in the regulation of EMT, involving the loss of E-cadherin and concomitant upregulation of vimentin, among other biomarkers. We have found FSCN1 promoted EMT in ovarian cancer cells, but the precise mechanism of FSCN1 in EMT process has not been clearly elucidated. Methods: The levels of FSCN1 and snail1 were determined in epithelial ovarian cancer(EOC) specimen and in ovarian cancer cells by RT-qPCR. The changes of EMT makers and effects on snail1 by FSCN1 were examined by overexpression or depletion of FSCN1 in EOC cells by RT-qPCR and western blotting. The invasiveness of the FSCN1-modified EOC cells was examined in transwell assay. Co-immunoprecipitation (IP) was performed to detect the interaction between snail1 and FSCN1 in EOC cells. Results: We found FSCN1 and snail1 significantly increased in EOC, and especially in EOC with metastasis. FSCN1 was positively correlated with snail1 expression at the cellular/histological levels. Moreover, we further showed that FSCN1 physiologically interacted with and increased the levels of snail1 to promote ovarian cancer cell EMT. Conclusion: FSCN1 promote EMT through snail1 in ovarian cancer cells. FSCN1 is an attractive novel target for inhibiting invasion and metastasis of EOC cells.


Sign in / Sign up

Export Citation Format

Share Document