transwell assay
Recently Published Documents


TOTAL DOCUMENTS

104
(FIVE YEARS 81)

H-INDEX

7
(FIVE YEARS 3)

2022 ◽  
Vol 12 (5) ◽  
pp. 971-977
Author(s):  
Ruoyu Zhu ◽  
Zhonglin Wang

This study investigated the impact of microRNA (miR)-376b derived from BMSCs on glioma progression. BMSCs were transfected with miR-376b mimic, miR-376b inhibitor or NC and then cocultured with glioma cells followed by measuring cell behaviors by MTT assay, Transwell assay and flow cytometry, FOXP2 and miR-376b expression by Western blot and RT-qPCR. After confirming the inhibitory and mimicking activity of transfection, we found that overexpression of miR-376b in BMSCs decreased glioma cell invasion, migration and proliferation but promoted cell apoptosis within 24 h and 48 h after transfection along with reduced number of cells in S-phase. Mechanically, miR-376b targeted miR-376b and up-regulation of miR-376b caused down-regulation of FOXP2 (p < 0.05). Overexpression of miR-376b in BMSCs decelerated glioma cell cycle and inhibitedmalignant behaviors of glioma cells by targeting FOXP2 expression. These evidence unveils the potential role of FOXP2 as a biomarker for the treatment of gliomas.


2022 ◽  
Vol 15 (1) ◽  
pp. 1-8
Author(s):  
Yu-Zhen Li ◽  
◽  
Ya Shen ◽  
Lian-Di Gao ◽  
Xin-Xin Chen ◽  
...  

AIM: To explore the effect of miR-184 and miR-205 on the proliferation and metastasis of conjunctival mucosa associated lymphoid tissue (MALT) lymphoma. METHODS: Tissue of tumor and adjacent normal control from 5 patients with conjunctival MALT was included. RPMI8226 cell line was selected to verify the effect of miRNAs in B cells. The function of microRNA on the RPMI8226 cell apoptosis, migration and invasion was evaluated by apoptosis assay and Transwell assay. The mRNA and protein expression were examined by quantitative RT-PCR and Western blotting. The effect of microRNA on regulation of downstream gene expression was evaluated by luciferase report assay. RESULTS: A decreased level of miR-184 and miR-205 was observed in MALT lymphoma tissue. Exogenous miR-184 and miR-205 analogues promoted apoptosis, and inhibited the survival, migration, and invasion of RPMI8226 cells. miR-184 and miR-205 inhibitor reversed the process. The RNA and protein level of RasL10B and TNFAIP8 were downregulated in MALT lymphoma tissue. The exogenous of miR-184 and miR-205 promoted the expression of RasL10B and TNFAIP8. Meanwhile, inhibition of miR-184 and miR-205 repressed the expression of target gene, RasL10B and TNFAIP8. CONCLUSION: miR-184 and miR-205 suppresses the tumorigenesis of conjunctival MALT lymphoma through regulating RasL10B and TNFAIP8.


2022 ◽  
Author(s):  
Liming Jin ◽  
Zhaoxia Zhang ◽  
Zhang Wang ◽  
Xiaojun Tan ◽  
Zhaoying Wang ◽  
...  

Abstract Background: CSCs play an important role in tumor development. Some studies have demonstrated that piRNAs participate in the progression of various cancers. However, the detailed function of piRNAs in CSCs requires further investigation. This study aimed to investigate the significance of some piRNAs in Piwil2-iCSCs. Methods and Results: Differentially expressed piRNAs in Piwil2-iCSCs were screened by high-throughput sequencing. Target genes were predicted by the miRanda algorithm and subjected to GO and KEGG analysis. One of the differential piRNAs, novel piRNA MW557525, was transfected and its target gene NOP56 was silenced in Piwil2-iCSCs, respectively. RT-qPCR, western blot and dual luciferase reporter assay were used to investigate the interaction of piRNA MW557525 and NOP56. We identified the effect of piRNA MW557525 and NOP56 knockdown on cell proliferation, migration, invasion, and apoptosis via CCK-8, transwell assay, and flow cytometry. The expressions of CD24, CD133, KLF4, and SOX2 were detected via WB. The results showed that piRNA MW557525 was negatively correlated with NOP56, and it promoted the proliferation, migration, invasion, and inhibited apoptosis in Piwil2-iCSCs, and it also promoted the expressions of CD24, CD133, KLF4, and SOX2, while NOP56 showed the opposite effect. Conclusions: These findings suggested that novel piRNA MW557525 might be a novel therapeutic target in Piwil2-iCSCs.


2022 ◽  
Vol 11 ◽  
Author(s):  
Bowen Liu ◽  
Jingchao Hu ◽  
Han Zhao ◽  
Li Zhao ◽  
Shiyuan Pan

The anticancer drug 5-fluorouracil (5-FU) resistance is a major obstacle to reducing the effectiveness of cancer treatment, and its detailed mechanism has not been fully elucidated. Here, in 5-FU-resistant human oral squamous cell carcinoma (OSCC) HSC3 cells (HSC3/5-FU), the levels of 21 miRNA candidates were detected using RT-PCR and miR-155-5p level increased strikingly in HSC3/5-FU cells compared to HSC3 cells. Compared with HSC3 cells, the CCK-8 assay showed that the HSC3/5-FU cells transfected with miR-155-5p inhibitors decreased 5-FU IC50. Ectopic expression of miR-155-5p in HSC3 and HSC4 cells increased 5-FU IC50 (CCK-8 assay), migration (wound-healing and transwell assays) and invasion (transwell assay) abilities. Seven miR-155-5p target candidates were discovered by miRNA prediction algorithms (miRDB, Targetscan, and miRWalk), and the RT-PCR results showed that in HSC3/5-FU cells TP53INP1 was of the lowest mRNA expression level compared with HSC3 cells. The RT-PCR and Western blotting assays showed that ectopic expression of miR-155-5p in HSC3 and HSC4 cells decreased TP53INP1 expression level. Furthermore, the luciferase reporter and RNA pull-down assays determined the interference effect of miR-155-5p on TP53INP1 expression. The enhancement of cell viability (CCK-8 assay), migration (wound-healing and transwell assays) and invasion (transwell assay) by miR-155-5p after 5-FU treatment was reversed by TP53INP1 overexpression. After treatment with 5-FU, HSC3-miR-155-5p tumor-bearing nude mice presented growing tumors, while HSC3-TP53INP1 group possessed shrinking tumors. In conclusion, these results lead to the proposal that miR-155-5p enhances 5-FU resistance by decreasing TP53INP1 expression in OSCC.


2021 ◽  
Author(s):  
Lei Jiang ◽  
Yuqiang Li ◽  
Yan Li ◽  
Tao Yang ◽  
Dongsheng Li ◽  
...  

Abstract Background: The tripartite motif (TRIM) family proteins feature highly conserved order of domains in the RBCC motif and most of them play an essential role in various cellular processes. Recently, increasing evidence has shown association of TRIM proteins with cancer development. In this study, we examined the expression pattern and biological functions of TRIM66 in cholangiocarcinoma (CCA).Methods: Western blot was performed for the protein levels of TRIM66, E-cadherin, α-catenin, N-cadherin, vimentin, p-PI3K, PI3K, p-Akt and Akt. MTT assay, wound healing assay and transwell assay were conducted for cell proliferation, migration and invasion, respectively. Glucose uptake and lactate production were determined using specific kits.Results: TRIM66 was overexpressed in CCA tissues and cell lines. In addition, knockdown of TRIM66 significantly inhibited proliferation, migration, invasion and glycolysis of CCA cells. Moreover, TRIM66 silencing obviously decreased levels of phosphorylated PI3K and Akt in CCA cells.Conclusion: Our study provided a novel insight into the roles of TRIM66 in CCA and suggested TRIM66 as a promising therapeutic target for CCA treatment.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Jihui Zhou ◽  
Li Xu ◽  
Peng Yang ◽  
Shibang Lin ◽  
Haizhou Huang

Abstract Background Circ-ATAD1 plays an oncogenic role in gastric cancer. However, its roles in other cancers are unclear. We aimed to analyze the role of circ-ATAD1 in osteosarcoma (OS). Methods The expression levels of circ-ATAD1, mature miR-154-5p, and premature miR-154-5p in paired OS and non-tumor tissues from 56 OS patients were determined using RT-qPCR. Nuclear fractionation assay was performed to analyze the subcellular location of circ-ATAD1. The interaction between circ-ATAD1 and premature miR-154-5p was analyzed using RNA pull-down assay. The role of circ-ATAD1 in regulating miR-154-5p maturation was analyzed using RT-qPCR in cells with overexpression. Transwell assays were performed to analyze the roles of circ-ATAD1 and miR-154-5p in regulating OS cell invasion and migration. Results Circ-ATAD1 was overexpressed in OS compared to non-tumor tissues and was detected in the nuclei of OS cells. Mature miR-154-5p, but not premature miR-154-5p, was downregulated in OS tissues compared to non-tumor tissues and was inversely correlated with circ-ATAD1. In OS cells, circ-ATAD1 overexpression decreased the expression of mature miR-154-5p, but not premature miR-154-5p. Transwell assay analysis showed that circ-ATAD1 overexpression increased cell invasion and migration, and mature miR-154-5p overexpression suppressed these cell behaviors. In addition, circ-ATAD1 overexpression reduced the effects of mature miR-154-5p overexpression on cell behaviors. Conclusions Circ-ATAD1 is overexpressed in OS and suppresses miR-154-5p maturation to increase cell invasion and migration.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Yaowen Wang ◽  
Jingfang Zhang ◽  
Feipeng Wang ◽  
Wenping Chen ◽  
Jie Ma ◽  
...  

Background. Previous studies have shown that alkannin has anticancer, anti-inflammatory, and antibacterial effects. However, the effect of alkannin in the development of ovarian cancer (OC) remains unknown. Therefore, this study aims to elucidate the function of alkannin in OC progression. Methods. RT-qPCR and western blot analysis were used to measure mRNA and protein expression. Cell viability and metastasis were detected by the CCK-8 assay, flow cytometry analysis, and transwell assay. Results. Alkannin had no cytotoxicity toward normal ovarian cells, but alkannin can inhibit cell proliferation and induce apoptosis in OC cells. In addition, alkannin inhibited cell migration and invasion and blocked EMT in OC. Besides, upregulation of miR-4461 was found in OC tissues and cells, which was regulated by alkannin. More importantly, miR-4461 can inverse the effects of alkannin on cell viability and metastasis in OC cells. Conclusion. Alkannin restrains cell viability, metastasis, and EMT in OC by downregulating miR-4461 expression.


2021 ◽  
Vol 11 (11) ◽  
pp. 2115-2119
Author(s):  
Gang Pan ◽  
Min Xiao

The action of miRNA-22 related with HCC metastasis was analyzed in our study and the mechanism of miRNA-22 related with HCC metastasis was discussed. The HCC hep2 cell was transfected with miRNA-22 mimics and miRNA-22 NC instantaneously followed by analysis of cell migration by Transwell assay, cell viability by MTT and clone formation and cell apoptosis by flow cytometry. The action of miRNA-22 mimics and miRNA-22 on the expression of P53 mRNA in HCC Hep2 cell was detected by RT-PCR. The cell activity in miRNA-22 mimics group was significantly elevated compared with miRNA-22 NC group (P < 0.01). Meanwhile, the apoptotic rate, migrated and invaded capacity of HCC cell was significantly elevated (P < 0.01). The expression level of P53 mRNA was reduced (P < 0.01). In conclusion, overexpression of miRNA-22 could restrain the apoptosis of HCC hep2 cell and down-regulated the expression of P53 so as to prompt cell invasion capacity.


2021 ◽  
Author(s):  
Bin Chen ◽  
Haijuan Xiao ◽  
Linguangjin Wu ◽  
Ting Wang ◽  
Shuyun Wang ◽  
...  

Abstract Background This study was intended to investigate the function of Quercetin in chemoresistant colorectal cancer (CRC) cells. In addition, this research aimed to explore the mechanism by which Quercetin regulates the malignant behavior of CRC cells. Methods To induce THP-1 cells into M2 tumor-associated macrophages (M2-TAMs), THP-1 cells were stimulated by PMA and IL-4. MDC staining was used to investigate the autophagy in M2-TAMs. Meanwhile, cell proliferation was tested by colony formation assay. In addition, wound healing and transwell assay were performed to detect the cell migration and invasion, respectively. Dual luciferase assay was used to investigate the correlation between hsa_circ_0006990 and miR-132-3p/miR-532-3p. Furthermore, mRNA and protein levels were detected by RT-qPCR and western blot, respectively. Results Quercetin suppressed autophagy of M2-TAMs. In addition, M2-TAMs significantly inhibited the apoptosis and promoted the proliferation of CRC cells, while this phenomenon was reversed by Quercetin. Meanwhile, the expression of hsa_circ_0006990 in CRC cells was decreased by M2-TAMs, while Quercetin reversed this phenomenon. Furthermore, overexpression of hsa_circ_0006990 significantly reversed the anti-tumor effect of Quercetin on CRC. Conclusion Quercetin inhibited the tumorigenesis of colorectal cancer cells through downregulation of hsa_circ_0006990. Thus, our study might shed new lights on exploring the new strategies against CRC.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e12312
Author(s):  
Yong Mao ◽  
Xin Lv ◽  
Wei Xu ◽  
Youguo Ying ◽  
Zonghe Qin ◽  
...  

Background Acute respiratory distress syndrome (ARDS) is a common cause of death in ICU patients and its underlying mechanism remains unclear, which leads to its high mortality rate. This study aimed to identify candidate genes potentially implicating in the pathogenesis of ARDS and provide novel therapeutic targets. Methods Using bioinformatics tools, we searched for differentially expressed genes (DEGs) in an ARDS microarray dataset downloaded from the Gene Expression Omnibus (GEO) database. Afterwards, functional enrichment analysis of GO, KEGG, GSEA and WGCNA were carried out to investigate the potential involvement of these DEGs. Moreover, the Protein–protein interaction (PPI) network was constructed and molecular complexes and hub genes were identified, followed by prognosis analysis of the hub genes. Further, we performed qRT-PCR, Western Blot and flow cytometry analysis to detect candidate genes of CCR2 and FPR3 in macrophage model of LPS-induced ARDS and primary alveolar macrophages(AMs). Macrophage chemotaxis was evaluated using Transwell assay. Results DEGs mainly involved in myeloid leukocyte activation, cell chemotaxis, adenylate cyclase-modulating G protein-coupled receptor signaling pathway and cytokine-cytokine receptor interaction. Basing on the constructed PPI network, we identified five molecular complexes and 10 hub genes potentially participating in the pathogenesis of ARDS. It was observed that candidate genes of CCR2 and FPR3 were significantly over-expressed in primary alveolar macrophages from ARDS patients and macrophgae model of LPS-induced ARDS. Moreover, in vitro transwell assay demonstrated that CCR2 and FPR3 down-regulation, respectively, inhibited LPS-triggered macrophage chemotaxis toward CCL2. Finally, a positive correlation between FPR3 and CCR2 expression was confirmed using pearson correlation analysis and Western Blot assay. Conclusions Our study identified CCR2 and FPR3 as the candidate genes which can promote macrophage chemotaxis through a possible interaction between FPR3 and CCL2/CCR2 axis and provided novel insights into ARDS pathogenesis.


Sign in / Sign up

Export Citation Format

Share Document