scholarly journals KPNA2 promotes migration and invasion in epithelial ovarian cancer cells by inducing epithelial-mesenchymal transition via Akt/GSK-3β/Snail activation

2018 ◽  
Vol 9 (1) ◽  
pp. 157-165 ◽  
Author(s):  
Long Huang ◽  
Yun Zhou ◽  
Xin-Ping Cao ◽  
Jia-Xin Lin ◽  
Lan Zhang ◽  
...  
Cells ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 237
Author(s):  
Zeinab Dehghani-Ghobadi ◽  
Shahrzad Sheikh Hasani ◽  
Ehsan Arefian ◽  
Ghamartaj Hossein

In this paper, we investigate whether Wnt5A is associated with the TGF-β1/Smad2/3 and Hippo-YAP1/TAZ-TEAD pathways, implicated in epithelial to mesenchymal transition (EMT) in epithelial ovarian cancer. We used 3D and 2D cultures of human epithelial ovarian cancer cell lines SKOV-3, OVCAR-3, CAOV-4, and different subtypes of human serous ovarian cancer compared to normal ovary specimens. Wnt5A showed a positive correlation with TAZ and TGFβ1 in high- and low-grade serous ovarian cancer specimens compared to borderline serous and normal ovaries. Silencing Wnt5A by siRNAs significantly decreased Smad2/3 activation and YAP1 expression and nuclear shuttling in ovarian cancer (OvCa) cells. Furthermore, Wnt5A was required for TGFβ1-induced cell migration and invasion. In addition, inhibition of YAP1 transcriptional activity by Verteporfin (VP) altered OvCa cell migration and invasion through decreased Wnt5A expression and inhibition of Smad2/3 activation, which was reverted in the presence of exogenous Wnt5A. We found that the activation of TGFβ1 and YAP1 nuclear shuttling was promoted by Wnt5A-induced integrin alpha v. Lastly, Wnt5A was implicated in activating human primary omental mesothelial cells and subsequent invasion of ovarian cancer cells. Together, we propose that Wnt5A could be a critical mediator of EMT-associated pathways.


Author(s):  
Hongwei Tan ◽  
Jin Qi ◽  
Guanghua Chu ◽  
Zhaoyang Liu

Tripartite motif 16 (TRIM16), a member of the RING B-box coiled-coil (RBCC)/tripartite motif (TRIM) protein family, has been shown to play a role in tumor development and progression. However, the role of TRIM16 in ovarian cancer has never been revealed. Thus, in this study, we investigated the roles and mechanisms of TRIM16 in ovarian cancer. Our results demonstrated that TRIM16 expression was low in ovarian cancer cell lines. In addition, overexpression of TRIM16 significantly inhibited the migration and invasion in vitro, as well as suppressed the epithelial‐mesenchymal transition (EMT) phenotype in ovarian cancer cells. Furthermore, overexpression of TRIM16 greatly inhibited the protein expression levels of Shh, Smo, Ptc, Gli-1, MMP2, and MMP9 in ovarian cancer cells. Taken together, these results strongly suggest that TRIM16 inhibits the migration and invasion via suppressing the Sonic hedgehog signaling pathway in ovarian cancer cells. Thus, TRIM16 may be a novel potential therapeutic target for ovarian cancer.


2020 ◽  
Vol 11 (8) ◽  
Author(s):  
Shixia Bu ◽  
Qian Wang ◽  
Junyan Sun ◽  
Xiao Li ◽  
Tingting Gu ◽  
...  

Abstract Chronic stress has been shown to facilitate progression of epithelial ovarian cancer (EOC), however, the neuro-endocranial mechanism participating in this process still remains unclear. Here, we reported that chronic restraint stress (CRS) promoted the abdominal implantation metastasis of EOC cells and the expression of epithelial–mesenchymal transition-related markers in tumor-bearing mouse model, including TWIST, SLUG, SNAIL, and β-catenin. We observed that β-catenin co-expressed with SLUG and norepinephrine (NE) in tumor tissues obtained from nude mice. Further ex vivo experiments revealed that NE promoted migration and invasion of ovarian cancer cells and SLUG expression through upregulating expression and improving transcriptional function of β-catenin in vitro. A human phosphor-kinase array suggested that NE activated various kinases in ovarian cancer cells, and we further confirmed that AKT inhibitor reduced NE-mediated pro-metastatic impacts and activation of the β-catenin/SLUG axis. Furthermore, the expression levels of NE and β-catenin were examined in ovarian tumor tissues by using tumor tissue arrays. Results showed that the expression levels of both NE and β-catenin were associated with poor clinical stage of serous EOC. Moreover, we found that melatonin (MLT) effectively reduced the abdominal tumor burden of ovarian cancer induced by CRS, which was partially related to the inhibition of the NE/AKT/β-catenin/SLUG axis. Collectively, these findings suggest a novel mechanism for CRS-mediated ovarian cancer metastasis and MLT has a potential therapeutic efficacy against ovarian cancer.


2022 ◽  
Vol 36 ◽  
pp. 205873842110586
Author(s):  
Yan Zhang ◽  
Min Zhou ◽  
Kun Li

Introduction MicroRNAs (miRs) exhibit the potential to act as therapeutic targets for the management of human cancers including ovarian cancer. The role of microRNA-30 (miR-30) via modulation of RAB32 expression has not been studied in ovarian cancer. Consistently, the present study was designed to characterize the molecular role of miR-30/RAB32 axis in human ovarian cancer. Methods Cell viability was determined by MTT assay. Expression analysis was carried out by qRT-PCR. Dual luciferase assay was used to confirm the interaction between miR-30 and RAB32. Scratch-heal and transwell chamber assays were used to monitor the cell migration and invasion. Western blotting and immunofluorescence assays were used to determine the protein expression. Results The results revealed significant ( p < 0.05) downregulation of miR-30 in human ovarian cancer cell lines. Overexpression of miR-30 in ovarian SK-OV-3 and A2780 cancer cells significantly ( p < 0.05) inhibited their proliferation. Besides, ovarian cancer cells overexpressing miR-30 showed significantly ( p < 0.05) lower migration and invasion. The miR-30 upregulation also altered the expression pattern of marker proteins of epithelial–mesenchymal transition in ovarian cancer cells. In silico analysis predicted RAB32 as the molecular target of miR-30 at post-transcriptional level. The silencing of RAB32 mimicked the tumor-suppressive effects of miR-30 overexpression in ovarian cancer cells. Nonetheless, overexpression of RAB32 could prevent the tumor-suppressive effects of miR-30 on SK-OV-3 and A2780 cancer cells. Conclusion Taken together, the results suggest the tumor-suppressive role of miR-30 and point towards the therapeutic utility of miR-30/RAB32 molecular axis in the management of ovarian cancer


2021 ◽  
Vol 11 ◽  
Author(s):  
Rui Gou ◽  
Yuexin Hu ◽  
Ouxuan Liu ◽  
Hui Dong ◽  
Lingling Gao ◽  
...  

Reprogramming of energy metabolism is a key hallmark of cancer, which provides a new research perspective for exploring the development of cancer. However, the most critical target of anti-glycolytic therapy for ovarian cancer remains unclear. Therefore, in the present study, Oncomine, GEPIA, and HPA databases, combined with clinical specimens of different histological types of ovarian cancer were used to comprehensively evaluate the expression levels of glycolysis-related metabolite transporters and enzymes in ovarian cancer. We selected phosphoglycerate kinase 1 (PGK1), which showed the greatest prognostic value in the Kaplan-Meier Plotter database, for subsequent validation. Immunochemistry assays confirmed that PGK1 was highly expressed in ovarian cancer. The PGK1 expression level was an independent risk factor for the survival and prognosis of patients with ovarian cancer. Functional analysis showed that the PGK1 expression level was positively correlated with the infiltration of neutrophils. Cell experiments confirmed that inhibiting PGK1 expression in ovarian cancer cells could reduce the epithelial-mesenchymal transition (EMT) process, resulting in loss of cell migration and invasion ability. The small molecule NG52 dose-dependently inhibited the proliferation of ovarian cancer cells. In addition, NG52 reduced the EMT process and reversed the Warburg effect by inhibiting PGK1 activity. Therefore, PGK1 is an attractive molecular target for anti-glycolytic therapy of ovarian cancer.


2020 ◽  
Vol 13 (1) ◽  
Author(s):  
Jun Gao ◽  
Yao Gao ◽  
Shixin Lin ◽  
Xia Zou ◽  
Yukai Zhu ◽  
...  

Abstract Objective This study aimed to explore the effects of activating GABAB1 receptor by baclofen on proliferation, migration, invasion and epithelial-mesenchymal transition (EMT) of ovarian cancer cells. Results One hundred μmol/L, 200 μmol/L and 300 μmol/L were selected as low, medium and high baclofen concentrations respectively. Cells were divided into four groups: Control, 100 μmol/L, 200 μmol/L and 300 μmol/L. Compared with the control group, the viability, colony formation, migration and invasion of SKOV3 cells were inhibited, and the apoptosis of SKOV3 cells were enhanced significantly at 200 μmol/L and 300 μmol/L baclofen. Moreover, they changed significantly with the increase of baclofen concentration. Compared with the control group, the expression of E-cadherin and GABAB1 increased and the N-cadherin expression decreased significantly in 200 μmol/L and 300 μmol/L groups. Higher concentration of baclofen induced higher expression of E-cadherin and lower expression of N-cadherin. Conclusion Baclofen inhibited the proliferation, cloning, migration, invasion and EMT of ovarian cancer cells by activating GABAB1 receptor. These results might contribute a lot to clarify the role and possible mechanism of GABAB1 receptor in ovarian cancer.


2015 ◽  
Vol 13 (1) ◽  
pp. 837-844
Author(s):  
LETIAN ZHANG ◽  
AJIN HU ◽  
MENGRUI LI ◽  
HONGQUAN ZHANG ◽  
CAIXIA REN ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document