scholarly journals Protective effects of CXCR3/HO‑1 gene‑modified BMMSCs on damaged intestinal epithelial cells: Role of the p38‑MAPK signaling pathway

Author(s):  
Mingli Yin ◽  
Zhongyang Shen ◽  
Liu Yang ◽  
Weiping Zheng ◽  
Hongli Song
Marine Drugs ◽  
2019 ◽  
Vol 17 (4) ◽  
pp. 205
Author(s):  
Su-Jin Jeong ◽  
Jeong-Wook Choi ◽  
Min-Kyeong Lee ◽  
Youn-Hee Choi ◽  
Taek-Jeong Nam

Spirulina is a type of filamentous blue-green microalgae known to be rich in nutrients and to have pharmacological effects, but the effect of spirulina on the small intestine epithelium is not well understood. Therefore, this study aims to investigate the proliferative effects of spirulina crude protein (SPCP) on a rat intestinal epithelial cells IEC-6 to elucidate the mechanisms underlying its effect. First, the results of wound-healing and cell viability assays demonstrated that SPCP promoted migration and proliferation in a dose-dependent manner. Subsequently, when the mechanisms of migration and proliferation promotion by SPCP were confirmed, we found that the epidermal growth factor receptor (EGFR) and mitogen-activated protein (MAPK) signaling pathways were activated by phosphorylation. Cell cycle progression from G0/G1 to S phase was also promoted by SPCP through upregulation of the expression levels of cyclins and cyclin-dependent kinases (Cdks), which regulate cell cycle progression to the S phase. Meanwhile, the expression of cyclin-dependent kinase inhibitors (CKIs), such as p21 and p27, decreased with SPCP. In conclusion, our results indicate that activation of EGFR and its downstream signaling pathway by SPCP treatment regulates cell cycle progression. Therefore, these results contribute to the research on the molecular mechanism for SPCP promoting the migration and proliferation of rat intestinal epithelial cells.


2014 ◽  
Vol 157 (1) ◽  
pp. 32-36 ◽  
Author(s):  
A. M. Dygai ◽  
V. V. Zhdanov ◽  
G. N. Zyuz’kov ◽  
E. V. Udut ◽  
L. A. Miroshnichenko ◽  
...  

2016 ◽  
Vol 39 (6) ◽  
pp. 2216-2226 ◽  
Author(s):  
Pei Li ◽  
Yuan Xu ◽  
Yibo Gan ◽  
Liyuan Wang ◽  
Bin Ouyang ◽  
...  

Background/Aims: Matrix homeostasis within the disc nucleus pulposus (NP) tissue is important for disc function. Increasing evidence indicates that sex hormone can influence the severity of disc degeneration. This study was aimed to study the role of 17β-estradiol (E2) in NP matrix synthesis and its underlying mechanism. Methods: Rat NP cells were cultured with (10-5, 10-7 and 10-9 M) or without (control) E2 for48 hours. The estrogen receptor (ER)-β antagonist PHTPP and ERβ agonist ERB 041 were used to investigate the role mediated by ERβ. The p38 MAPK inhibitor SB203580 was used to investigate the role of p38 MAPK signaling pathway. Gene and protein expression of SOX9, aggrecan and collagen II, glycosaminoglycan (GAG) content, and immunostaining assay for aggrecan and collagen II were analyzed to evaluate matrix production in rat NP cells. Results: E2 enhanced NP matrix synthesis in a concentration-dependent manner regarding gene and proetin expression of SOX9, aggrecan and collagen II, protein deposition of aggrecan and collagen II, and GAG content. Moreover, activation of p38 MAPK signaling pathway was increased with elevating E2 concentration. Further analysis indicated that ERB 041 and PHTPP could respectively enhance and suppress effects of E2 on matrix synthesis in NP cells, as well as activation of p38 MAPK pathway. Additionally, inhibition of p38 MAPK signaling pathway significantly abolished the effects of E2 on matrix synthesis. Conclusion: E2 can enhance matrix synthesis of NP cells and the ERβ/p38 MAPK pathway is involved in this regulatory process.


2003 ◽  
Vol 111 (6) ◽  
pp. 833-841 ◽  
Author(s):  
Shaosong Zhang ◽  
Carla Weinheimer ◽  
Michael Courtois ◽  
Attila Kovacs ◽  
Cindy E. Zhang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document