scholarly journals 1-calcium phosphate-uracil, a synthesized pyrimidine derivative agent, has anti-proliferative, pro-apoptotic and anti-invasion effects on multiple tumor cell lines

2014 ◽  
Vol 10 (5) ◽  
pp. 2271-2278 ◽  
Author(s):  
JING PENG ◽  
XINLIAN CHEN ◽  
QIAN HU ◽  
MEI YANG ◽  
HONGQIAN LIU ◽  
...  
Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 1588-1588 ◽  
Author(s):  
Susan D. Demo ◽  
Tonia J. Buchholz ◽  
Guy J. Laidig ◽  
Francesco Parlati ◽  
Kevin D. Shenk ◽  
...  

Abstract Recent clinical studies have identified the proteasome as an important therapeutic target for hematologic malignances. The proteasome inhibitor, bortezomib, has been approved for the treatment of relapsed or refractory multiple myeloma and ongoing clinical trials suggests a potential benefit for the treatment of Non-Hodgkin’s lymphoma. PR-171 is a novel epoxomicin derivative that is a potent and irreversible inhibitor of the human proteasome. It inhibits the chymotrypsin-like activity of purified human 20S proteasome with a kinact/Ki of 34,000 M−1s−1 and is >300-fold selective over the other proteasome catalytic activities. In addition, PR-171 has been found to exhibit minimal activity in a broad diversity panel of biochemical assays that includes 67 receptor/ligand and 37 enzyme assays. PR-171 retains its potency for inhibition of the proteasome chymotrypsin-like activity in mammalian cells displaying IC50 values <10 nM in multiple tumor cell lines. Although PR-171 is a covalent irreversible inhibitor, proteasome activity in cells recovers with a t1/2 of approximately 24 hr after removal of the compound. This recovery is likely due to induction of de novo synthesis since other proteasome inhibitors have been shown to promote transcription of multiple proteasome subunit genes. The cellular consequences of proteasome inhibition by PR-171 include accumulation of polyubiquitinated proteins, cell cycle arrest, and induction of apoptosis. Potent cytotoxic activity of PR-171 is observed across a broad panel of human tumor cell lines (IC50 range: 2–40 nM). Pulsatile exposure studies designed to mimic the anticipated drug exposure in vivo have demonstrated that cytotoxicity is dependent upon the magnitude and duration of proteasome inhibition. These studies have also shown that hematological tumor lines are most sensitive to brief PR-171 exposure, with solid tumor lines exhibiting intermediate sensitivity and non-transformed cells being the least sensitive to such treatment. Finally, PR-171 has been found to retain its cytotoxic potential on cells made resistant to bortezomib in vitro. These studies motivate the clinical investigation of PR-171 in hematological malignances.


2006 ◽  
Vol 12 (12) ◽  
pp. 3831-3842 ◽  
Author(s):  
Tarikere L. Gururaja ◽  
Dane Goff ◽  
Taisei Kinoshita ◽  
Eileen Goldstein ◽  
Stephanie Yung ◽  
...  

Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 2076-2076
Author(s):  
Yu Qian ◽  
Henry W.B. Johnson ◽  
Christopher J. Kirk ◽  
Eric Lowe ◽  
Dustin McMinn ◽  
...  

Secreted and transmembrane (TM) proteins play key roles in malignant transformation and tumor growth, including autocrine growth factor expression, receptor oncogene signal transduction pathways, metastasis, and immune system evasion. During translation, the majority of such proteins require translocation through the Sec61 translocon into the Endoplasmic Reticulum (ER) for further processing. This process is negotiated by unique signal sequences of the translating protein. Therefore, Sec61 represents a novel therapeutic target for cancer treatment through selective blockade of protein secretion. We generated Sec61 inhibitors and assessed their potential against target proteins using HEK293 cell lines stably expressing secreted or TM proteins of interest fused to a luciferase reporter. Additionally, anti-tumor activity was determined across both solid and liquid tumor cell lines in vitro and in mouse models. KZR-8834, a lead candidate identified through a medicinal chemistry campaign, induced cell death in multiple tumor cell lines in vitro, including multiple myeloma (MM), and was effective in xenograft models at doses that did not induce significant body weight loss or clinical signs of toxicity. We utilized quantitative proteomic methods to study KZR-8834 for inhibition of protein secretion and global modulation of protein homeostasis in sensitive and resistant tumor cell lines. Multiple tumor cell types were tested at various doses and time courses followed by subcellular fractionation of cytosolic and membrane/ER proteomes. Subsequent proteomic profiling was performed with Stable Isotope Labeling by/with Amino acids in Cell culture (SILAC) and/or Tandem Mass Tag 6-plex (TMT-sixplex). Sensitive targets from both proteomes were further verified using downstream biochemical methods. Sec61 client proteins showed both time- and dose-dependent inhibition upon compound treatment and proteomic results were verified via western blot analysis. Approximately 20% of the total Sec61 clientome and 25% of total proteins detected in a sensitive multiple myeloma (MM) cell line, H929, were significantly down-regulated in response to KZR-8834 treatment at concentrations leading to cell death. IPA pathway analysis suggested that activation of the ER stress response gene ATF4 was induced by KZR-8834 treatment in H929 cells. In a resistant MM cell line, U266, only 13% of the total Sec61 clientome and 5% of total protein detected were significantly down-regulated in response to the same compound treatment. A distinct profile of down-regulated Sec61 clientome was noted with overlap in only 11 of 394 commonly expressed proteins across those two cell lines. Interestingly, in compound treated cells, 39 down-regulated Sec61 client proteins in H929 were either unchanged or upregulated in U266 cells. Conversely, 38 upregulated H929 Sec61 clients were either unchanged or down-regulated in U266 cells. We further explored the ER stress response induced by KZR-8834 via comparative proteomic analysis in H929 cells treated with known ER stress inducers, Tunicamycin and Thapsigargin. These agents, which exert ER stress upon inhibition of N-linked glycosylation and blockade of ER Ca2+ flux, respectively, showed distinct cytosolic proteomic profiles in H929 cells relative to KZR-8834 treatment. These data suggest that KZR-8834-induced blockade of Sec61 results in a unique form of proteotoxic stress in sensitive MM cells. Collectively our results highlight quantitative proteomic profiling as a valuable tool toward elucidating the mechanism of pleiotropic acting molecules like KZR-8834. These studies constitute important first steps toward clarifying the anti-tumor mechanism inhibiting Sec61, a novel pathway agent, for the potential treatment of hematologic tumors. Disclosures Qian: Kezar Life Sciences: Employment, Equity Ownership. Johnson:Kezar Life Sciences: Employment, Equity Ownership. Kirk:Kezar Life Sciences: Employment, Equity Ownership. Lowe:Kezar Life Sciences: Employment, Equity Ownership. McMinn:Kezar Life Sciences: Employment, Equity Ownership. Millare:Kezar Life Sciences: Employment, Equity Ownership. Muchamuel:Kezar Life Sciences: Employment, Equity Ownership. Wang:Kezar Life Sciences: Employment, Equity Ownership.


1983 ◽  
Vol 50 (03) ◽  
pp. 726-730 ◽  
Author(s):  
Hamid Al-Mondhiry ◽  
Virginia McGarvey ◽  
Kim Leitzel

SummaryThis paper reports studies on the interaction between human platelets, the plasma coagulation system, and two human tumor cell lines grown in tissue culture: Melanoma and breast adenocarcinoma. The interaction was monitored through the use of 125I- labelled fibrinogen, which measures both thrombin activity generated by cell-plasma interaction and fibrin/fibrinogen binding to platelets and tumor cells. Each tumor cell line activates both the platelets and the coagulation system simultaneously resulting in the generation of thrombin or thrombin-like activity. The melanoma cells activate the coagulation system through “the extrinsic pathway” with a tissue factor-like effect on factor VII, but the breast tumor seems to activate factor X directly. Both tumor cell lines activate platelets to “make available” a platelet- derived procoagulant material necessary for the conversion of prothrombin to thrombin. The tumor-derived procoagulant activity and the platelet aggregating potential of cells do not seem to be inter-related, and they are not specific to malignant cells.


1989 ◽  
Vol 1 (6) ◽  
pp. 359-365 ◽  
Author(s):  
Richard D. H. Whelan ◽  
Louise K. Hosking ◽  
Alan J. Townsend ◽  
Kenneth H. Cowan ◽  
Bridget T. Hill

2006 ◽  
Vol 11 (3) ◽  
pp. 177-183 ◽  
Author(s):  
Kil-Nam Kim ◽  
Ki-Wan Lee ◽  
Choon-Bok Song ◽  
Chang-Bum Ahn ◽  
You-Jin Jeon

2020 ◽  
Vol 17 (4) ◽  
pp. 512-517
Author(s):  
Ognyan Ivanov Petrov ◽  
Yordanka Borisova Ivanova ◽  
Mariana Stefanova Gerova ◽  
Georgi Tsvetanov Momekov

Background: Chemotherapy is one of the mainstays of cancer treatment, despite the serious side effects of the clinically available anticancer drugs. In recent years increasing attention has been directed towards novel agents with improved efficacy and selectivity. Compounds with chalcone backbone have been reported to possess various biological activities such as anticancer, antimicrobial, anti-inflammatory, analgesic, antioxidant, etc. It was reported that aminomethylation of hydroxy chalcones to the corresponding Mannich bases increased their cytotoxicity. In this context, our interest has been focused on the design and synthesis of the so-called multi-target molecules, containing two or more pharmacophore fragments. Methods: A series of Mannich bases were synthesized by the reaction between 6-[3-(3,4,5- trimethoxyphenyl)-2-propenoyl]-2(3Н)-benzoxazolone, formaldehyde, and a secondary amine. The structures of the compounds were confirmed by elemental analysis, IR and NMR spectra. The new Mannich bases were evaluated for their in vitro cytotoxicity against a panel of human tumor cell lines, including BV-173, SKW-3, K-562, HL-60, HD-MY-Z and MDA-MB-231. The effects of selected compounds on the cellular levels of glutathione (GSH) were determined. Results: The new compounds 4a-e exhibited concentration-dependent cytotoxic effects at micromolar concentrations in MTT-dye reduction assay against a panel of human tumor cell lines, similar to those of starting chalcone 3. The tested agents led to concentration - dependent depletion of cellular GSH levels, whereby the effects of the chalcone prototype 3 and its Mannich base-derivatives were comparable. Conclusion: The highest chemosensitivity to the tested compounds was observed in BV- 173followed by SKW-3 and HL-60 cell lines.


Sign in / Sign up

Export Citation Format

Share Document