scholarly journals Urate transport capacity of glucose transporter 9 and urate transporter 1 in cartilage chondrocytes

Author(s):  
Bingqing Zhang ◽  
Mengyuan Duan ◽  
Bo Long ◽  
Baozhong Zhang ◽  
Dongmei Wang ◽  
...  
2015 ◽  
Vol 290 (24) ◽  
pp. 15292-15303 ◽  
Author(s):  
Wentong Long ◽  
Pankaj Panwar ◽  
Kate Witkowska ◽  
Kenneth Wong ◽  
Debbie O'Neill ◽  
...  

1990 ◽  
Vol 259 (6) ◽  
pp. E778-E786 ◽  
Author(s):  
T. Ploug ◽  
B. M. Stallknecht ◽  
O. Pedersen ◽  
B. B. Kahn ◽  
T. Ohkuwa ◽  
...  

The effect of 10 wk endurance swim training on 3-O-methylglucose (3-MG) uptake (at 40 mM 3-MG) in skeletal muscle was studied in the perfused rat hindquarter. Training resulted in an increase of approximately 33% for maximum insulin-stimulated 3-MG transport in fast-twitch red fibers and an increase of approximately 33% for contraction-stimulated transport in slow-twitch red fibers compared with nonexercised sedentary muscle. A fully additive effect of insulin and contractions was observed both in trained and untrained muscle. Compared with transport in control rats subjected to an almost exhaustive single exercise session the day before experiment both maximum insulin- and contraction-stimulated transport rates were increased in all muscle types in trained rats. Accordingly, the increased glucose transport capacity in trained muscle was not due to a residual effect of the last training session. Half-times for reversal of contraction-induced glucose transport were similar in trained and untrained muscles. The concentrations of mRNA for GLUT-1 (the erythrocyte-brain-Hep G2 glucose transporter) and GLUT-4 (the adipocyte-muscle glucose transporter) were increased approximately twofold by training in fast-twitch red muscle fibers. In parallel to this, Western blot demonstrated a approximately 47% increase in GLUT-1 protein and a approximately 31% increase in GLUT-4 protein. This indicates that the increases in maximum velocity for 3-MG transport in trained muscle is due to an increased number of glucose transporters.


2018 ◽  
Vol 46 (03) ◽  
pp. 585-599 ◽  
Author(s):  
Tianqiao Yong ◽  
Shaodan Chen ◽  
Yizhen Xie ◽  
Diling Chen ◽  
Jiyan Su ◽  
...  

Ethanol and water extracts of Armillaria mellea were prepared by directly soaking A. mellea in ethanol (AME) at 65[Formula: see text]C, followed by decocting the remains in water (AMW) at 85[Formula: see text]C. Significantly, AME and AMW at 30, 60 and 120[Formula: see text]mg/kg exhibited excellent hypouricemic actions, causing remarkable declines from hyperuricemic control (351[Formula: see text][Formula: see text]mol/L, [Formula: see text]) to 136, 130 and 115[Formula: see text][Formula: see text]mol/L and 250, 188 and 152[Formula: see text][Formula: see text]mol/L in serum uric acid, correspondingly. In contrast to the evident renal toxicity of allopurinol, these preparations showed little impacts. Moreover, they showed some inhibitory effect on XOD (xanthine oxidase) activity. Compared with hyperuricemic control, protein expressions of OAT1 (organic anion transporter 1) were significantly elevated in AME- and AMW-treated mice. The levels of GLUT9 (glucose transporter 9) expression were significantly decreased by AMW. CNT2 (concentrative nucleoside transporter 2), a key target for purine absorption in gastrointestinal tract was involved in this study, and was verified for its innovative role. Both AME and AMW down-regulated CNT2 proteins in the gastrointestinal tract in hyperuricemic mice. As they exhibited considerable inhibitory effects on XOD, we selected XOD as the target for virtual screening by using molecular docking, and four compounds were hit with high ranks. From the analysis, we concluded that hydrogen bond, Pi–Pi and Pi-sigma interactions might play important roles for their orientations and locations in XOD inhibition.


1995 ◽  
Vol 269 (3) ◽  
pp. R544-R551 ◽  
Author(s):  
X. Han ◽  
T. Ploug ◽  
H. Galbo

A diet rich in fat diminishes insulin-mediated glucose uptake in muscle. This study explored whether contraction-mediated glucose uptake is also affected. Rats were fed a diet rich in fat (FAT, 73% of energy) or carbohydrate (CHO, 66%) for 5 wk. Hindquarters were perfused, and either glucose uptake or glucose transport capacity (uptake of 3-O-[14C]-methyl-D-glucose (40 mM)) was measured. Amounts of glucose transporter isoform GLUT-1 and GLUT-4 glucose-transporting proteins were determined by Western blot. Glucose uptake was lower (P < 0.05) in hindlegs from FAT than from CHO rats at submaximum and maximum insulin [4 +/- 0.4 vs. 5 +/- 0.3 (SE) mumol.min-1.leg-1 at 150 microU/ml insulin] as well as during prolonged stimulation of the sciatic nerve (4.4 +/- 0.4 vs. 5.6 +/- 0.6 mumol.min-1.leg-1). Maximum glucose transport elicited by insulin (soleus: 1.7 +/- 0.2 vs. 2.6 +/- 0.2 mumol.g-1.5 min-1, P < 0.05) or contractions (soleus: 1.8 +/- 0.2 vs. 2.6 +/- 0.3, P < 0.05) in red muscle was decreased in parallel in FAT compared with CHO rats. GLUT-4 content was decreased by 13-29% (P < 0.05) in the various fiber types, whereas GLUT-1 content was identical in FAT compared with CHO rats. It is concluded that a FAT diet reduces both insulin and contraction stimulation of glucose uptake in muscle and that these effects are associated with diminished skeletal muscle glucose transport capacities and GLUT-4 contents.


2008 ◽  
Vol 83 (6) ◽  
pp. 795 ◽  
Author(s):  
Hirotaka Matsuo ◽  
Toshinori Chiba ◽  
Shushi Nagamori ◽  
Akiyoshi Nakayama ◽  
Hideharu Domoto ◽  
...  

Molecules ◽  
2018 ◽  
Vol 23 (10) ◽  
pp. 2671 ◽  
Author(s):  
Tianqiao Yong ◽  
Dan Li ◽  
Muxia Li ◽  
Danling Liang ◽  
Xue Diao ◽  
...  

Conventionally, benzophenone-type molecules are beneficial for alleviating the UV exposure of humans. More importantly, various compounds with this skeleton have demonstrated various biological activities. In this paper, we report the anti-hyperuricemic effect of the benzophenone compound 2-hydroxy-4-methoxybenzophenone-5-sulfonic acid (HMS). Preliminarily, its molecular docking score and xanthine oxidase (XOD) inhibition suggested a good anti-hyperuricemic effect. Then, its anti-hyperuricemic effect, primary mechanisms and general toxicity were examined on a hyperuricemic mouse model which was established using potassium oxonate and hypoxanthine together. HMS demonstrated a remarkable anti- hyperuricemic effect which was near to that of the control drugs, showing promising perspective. General toxicity was assessed and it showed no negative effects on body weight growth and kidney function. Moreover, anti-inflammatory action was observed for HMS via spleen and thymus changes. Its anti-hyperuricemic mechanisms may be ascribed to its inhibition of XOD and its up-regulation of organic anion transporter 1 (OAT1) and down-regulation of glucose transporter 9 (GLUT9).


2008 ◽  
Vol 83 (6) ◽  
pp. 744-751 ◽  
Author(s):  
Hirotaka Matsuo ◽  
Toshinori Chiba ◽  
Shushi Nagamori ◽  
Akiyoshi Nakayama ◽  
Hideharu Domoto ◽  
...  

2000 ◽  
Vol 350 (3) ◽  
pp. 771-776 ◽  
Author(s):  
Holger DOEGE ◽  
Andreas BOCIANSKI ◽  
Hans-Georg JOOST ◽  
Annette SCHÜRMANN

The GLUT9 gene encodes a cDNA which exhibits significant sequence similarity with members of the glucose transporter (GLUT) family. The gene is located on chromosome 9q34 and consists of 10 exons separated by short introns. The amino acid sequence deduced from its cDNA predicts 12 putative membrane-spanning helices and all the motifs (sugar-transporter signatures) that have previously been shown to be essential for transport activity. A striking characteristic of GLUT9 is the presence of two arginines in the putative helices 7 and 8 at positions where the organic anion transporters harbour basic residues. The next relative of GLUT9 is the glucose transporter GLUT8/GLUTX1 (44.8% amino acid identity with GLUT9). A 2.6-kb transcript of GLUT9 was detected in spleen, peripheral leucocytes and brain. Transfection of COS-7 cells with GLUT9 produced expression of a 46-kDa membrane protein which exhibited reconstitutable glucose-transport activity and low-affinity cytochalasin-B binding. It is concluded that GLUT9 is a novel member of the family of sugar-transport facilitators with a tissue-specific function.


Sign in / Sign up

Export Citation Format

Share Document