Effect of diet on insulin- and contraction-mediated glucose transport and uptake in rat muscle

1995 ◽  
Vol 269 (3) ◽  
pp. R544-R551 ◽  
Author(s):  
X. Han ◽  
T. Ploug ◽  
H. Galbo

A diet rich in fat diminishes insulin-mediated glucose uptake in muscle. This study explored whether contraction-mediated glucose uptake is also affected. Rats were fed a diet rich in fat (FAT, 73% of energy) or carbohydrate (CHO, 66%) for 5 wk. Hindquarters were perfused, and either glucose uptake or glucose transport capacity (uptake of 3-O-[14C]-methyl-D-glucose (40 mM)) was measured. Amounts of glucose transporter isoform GLUT-1 and GLUT-4 glucose-transporting proteins were determined by Western blot. Glucose uptake was lower (P < 0.05) in hindlegs from FAT than from CHO rats at submaximum and maximum insulin [4 +/- 0.4 vs. 5 +/- 0.3 (SE) mumol.min-1.leg-1 at 150 microU/ml insulin] as well as during prolonged stimulation of the sciatic nerve (4.4 +/- 0.4 vs. 5.6 +/- 0.6 mumol.min-1.leg-1). Maximum glucose transport elicited by insulin (soleus: 1.7 +/- 0.2 vs. 2.6 +/- 0.2 mumol.g-1.5 min-1, P < 0.05) or contractions (soleus: 1.8 +/- 0.2 vs. 2.6 +/- 0.3, P < 0.05) in red muscle was decreased in parallel in FAT compared with CHO rats. GLUT-4 content was decreased by 13-29% (P < 0.05) in the various fiber types, whereas GLUT-1 content was identical in FAT compared with CHO rats. It is concluded that a FAT diet reduces both insulin and contraction stimulation of glucose uptake in muscle and that these effects are associated with diminished skeletal muscle glucose transport capacities and GLUT-4 contents.

1990 ◽  
Vol 259 (6) ◽  
pp. E778-E786 ◽  
Author(s):  
T. Ploug ◽  
B. M. Stallknecht ◽  
O. Pedersen ◽  
B. B. Kahn ◽  
T. Ohkuwa ◽  
...  

The effect of 10 wk endurance swim training on 3-O-methylglucose (3-MG) uptake (at 40 mM 3-MG) in skeletal muscle was studied in the perfused rat hindquarter. Training resulted in an increase of approximately 33% for maximum insulin-stimulated 3-MG transport in fast-twitch red fibers and an increase of approximately 33% for contraction-stimulated transport in slow-twitch red fibers compared with nonexercised sedentary muscle. A fully additive effect of insulin and contractions was observed both in trained and untrained muscle. Compared with transport in control rats subjected to an almost exhaustive single exercise session the day before experiment both maximum insulin- and contraction-stimulated transport rates were increased in all muscle types in trained rats. Accordingly, the increased glucose transport capacity in trained muscle was not due to a residual effect of the last training session. Half-times for reversal of contraction-induced glucose transport were similar in trained and untrained muscles. The concentrations of mRNA for GLUT-1 (the erythrocyte-brain-Hep G2 glucose transporter) and GLUT-4 (the adipocyte-muscle glucose transporter) were increased approximately twofold by training in fast-twitch red muscle fibers. In parallel to this, Western blot demonstrated a approximately 47% increase in GLUT-1 protein and a approximately 31% increase in GLUT-4 protein. This indicates that the increases in maximum velocity for 3-MG transport in trained muscle is due to an increased number of glucose transporters.


1990 ◽  
Vol 269 (3) ◽  
pp. 597-601 ◽  
Author(s):  
D M Calderhead ◽  
K Kitagawa ◽  
G E Lienhard ◽  
G W Gould

Insulin-stimulated glucose transport was examined in BC3H-1 myocytes. Insulin treatment lead to a 2.7 +/- 0.3-fold increase in the rate of deoxyglucose transport and, under the same conditions, a 2.1 +/- 0.1-fold increase in the amount of the brain-type glucose transporter (GLUT 1) at the cell surface. It has been shown that some insulin-responsive tissues express a second, immunologically distinct, transporter, namely GLUT 4. We report here that BC3H-1 myocytes and C2 and G8 myotubes express only GLUT 1; in contrast, rat soleus muscle and heart express 3-4 times higher levels of GLUT 4 than GLUT 1. Thus translocation of GLUT 1 can account for most, if not all, of the insulin stimulation of glucose transport in BC3H-1 myocytes. On the other, hand, neither BC3H-1 myocytes nor the other muscle-cell lines are adequate as models for the study of insulin regulation of glucose transport in muscle tissue.


Physiology ◽  
1999 ◽  
Vol 14 (3) ◽  
pp. 105-110 ◽  
Author(s):  
Alireza Behrooz ◽  
Faramarz Ismail-Beigi

Glucose transport is acutely stimulated by hypoxia through enhanced GLUT-1 and GLUT-4 glucose transporter function. GLUT-1 expression is also stimulated by hypoxia or azide. Moreover, hypoxia per se, acting through hypoxia-inducible factor 1, enhances GLUT-1 transcription. GLUT-1 is the first gene whose transcription is dually stimulated in response to hypoxia and inhibition of oxidative phosphorylation.


2000 ◽  
Vol 88 (3) ◽  
pp. 1072-1075 ◽  
Author(s):  
Edward O. Ojuka ◽  
Lorraine A. Nolte ◽  
John O. Holloszy

Exercise acutely stimulates muscle glucose transport and also brings about an adaptive increase in the capacity of muscle for glucose uptake by inducing increases in GLUT-4 and hexokinase.1 Recent studies have provided evidence that activation of AMP protein kinase (AMPK) is involved in the stimulation of glucose transport by exercise. The purpose of this study was to determine whether activation of AMPK is also involved in mediating the adaptive increases in GLUT-4 and hexokinase. To this end, we examined the effect of incubating rat epitrochlearis muscles in culture medium for 18 h in the presence or absence of 5-aminoimidazole-4-carboxamide ribonucleoside (AICAR), which enters cells and is converted to the AMP analog ZMP, thus activating AMPK. Exposure of muscles to 0.5 mM AICAR in vitro for 18 h resulted in an ∼50% increase in GLUT-4 protein and an ∼80% increase in hexokinase. This finding provides strong evidence in support of the hypothesis that the activation of AMPK that occurs in muscle during exercise is involved in mediating the adaptive increases in GLUT-4 and hexokinase.


1998 ◽  
Vol 84 (3) ◽  
pp. 798-802 ◽  
Author(s):  
Helen H. Host ◽  
Polly A. Hansen ◽  
Lorraine A. Nolte ◽  
May M. Chen ◽  
John O. Holloszy

Previous studies have shown that when exercise is stopped there is a rapid reversal of the training-induced adaptive increase in muscle glucose transport capacity. Endurance exercise training brings about an increase in GLUT-4 in skeletal muscle. The primary purpose of this study was to determine whether the rapid reversal of the increase in maximally insulin-stimulated glucose transport after cessation of training can be explained by a similarly rapid decrease in GLUT-4. A second purpose was to evaluate the possibility, suggested by previous studies, that the magnitude of the adaptive increase in muscle GLUT-4 decreases when exercise training is extended beyond a few days. We found that both GLUT-4 and maximally insulin-stimulated glucose transport were increased approximately twofold in epitrochlearis muscles of rats trained by swimming for 6 h/day for 5 days or 5 wk. GLUT-4 was 90% higher, citrate synthase activity was 23% higher, and hexokinase activity was 28% higher in triceps muscle of the 5-day trained animals compared with the controls. The increases in GLUT-4 protein and in insulin-stimulated glucose transport were completely reversed within 40 h after the last exercise bout, after both 5 days and 5 wk of training. In contrast, the increases in citrate synthase and hexokinase activities were unchanged 40 h after 5 days of exercise. These results support the conclusion that the rapid reversal of the increase in the insulin responsiveness of muscle glucose transport after cessation of training is explained by the short half-life of the GLUT-4 protein.


1990 ◽  
Vol 259 (4) ◽  
pp. E593-E598 ◽  
Author(s):  
E. J. Henriksen ◽  
R. E. Bourey ◽  
K. J. Rodnick ◽  
L. Koranyi ◽  
M. A. Permutt ◽  
...  

The relationships among fiber type, glucose transporter (GLUT-4) protein content, and glucose transport activity stimulated maximally with insulin and/or contractile activity were studied by use of the rat epitrochlearis (15% type I-20% type II2a-65% type IIb), soleus (84-16-0%), extensor digitorum longus (EDL, 3-57-40%), and flexor digitorum brevis (FDB, 7-92-1%) muscles. Insulin-stimulated 2-deoxy-D-glucose (2-DG) uptake was greatest in the soleus, followed (in order) by the FDB, EDL, and epitrochlearis. On the other hand, contractile activity induced the greatest increase in 2-DG uptake in the FDB, followed by the EDL, soleus, and epitrochlearis. The effects of insulin and contractile activity on 2-DG uptake were additive in all the muscle preparations, with the relative rates being FDB greater than soleus greater than EDL greater than epitrochlearis. Quantitation of the GLUT-4 protein content with the antiserum R820 showed the following pattern: FDB greater than soleus greater than EDL greater than epitrochlearis. Linear regression analysis showed that whereas a relatively low and nonsignificant correlation existed between GLUT-4 protein content and 2-DG uptake stimulated by insulin alone, significant correlations existed between GLUT-4 protein content and 2-DG uptake stimulated either by contractions alone (r = 0.950) or by insulin and contractions in combination (r = 0.992). These results suggest that the differences in maximally stimulated glucose transport activity among the three fiber types may be related to differences in their content of GLUT-4 protein.


1997 ◽  
Vol 273 (3) ◽  
pp. C1082-C1087 ◽  
Author(s):  
A. D. Lee ◽  
P. A. Hansen ◽  
J. Schluter ◽  
E. A. Gulve ◽  
J. Gao ◽  
...  

beta-Adrenergic stimulation has been reported to inhibit insulin-stimulated glucose transport in adipocytes. This effect has been attributed to a decrease in the intrinsic activity of the GLUT-4 isoform of the glucose transporter that is mediated by phosphorylation of GLUT-4. Early studies showed no inhibition of insulin-stimulated glucose transport by epinephrine in skeletal muscle. The purpose of this study was to determine the effect of epinephrine on GLUT-4 phosphorylation, and reevaluate the effect of beta-adrenergic stimulation on insulin-activated glucose transport, in skeletal muscle. We found that 1 microM epinephrine, which raised adenosine 3',5'-cyclic monophosphate approximately ninefold, resulted in GLUT-4 phosphorylation in rat skeletal muscle but had no inhibitory effect on insulin-stimulated 3-O-methyl-D-glucose (3-MG) transport. In contrast to 3-MG transport, the uptakes of 2-deoxyglucose and glucose were markedly inhibited by epinephrine treatment. This inhibitory effect was presumably mediated by stimulation of glycogenolysis, which resulted in an increase in glucose 6-phosphate concentration to levels known to severely inhibit hexokinase. We conclude that 1) beta-adrenergic stimulation decreases glucose uptake by raising glucose 6-phosphate concentration, thus inhibiting hexokinase, but does not inhibit insulin-stimulated glucose transport and 2) phosphorylation of GLUT-4 has no effect on glucose transport in skeletal muscle.


1997 ◽  
Vol 272 (1) ◽  
pp. E7-E17 ◽  
Author(s):  
T. Ploug ◽  
X. Han ◽  
L. N. Petersen ◽  
H. Galbo

Cholera toxin (CTX) and pertussis toxin (PTX) were examined for their ability to inhibit glucose transport in perfused skeletal muscle. Twenty-five hours after an intravenous injection of CTX, basal transport was decreased approximately 30%, and insulin- and contraction-stimulated transport was reduced at least 86 and 49%, respectively, in both the soleus and red and white gastrocnemius muscles. In contrast, PTX treatment was much less efficient. Impairment of glucose transport appeared to develop 10-15 h after CTX administration, which coincided with development of hyperglycemia despite hyperinsulinimia, increased plasma free fatty acid levels, increased adenosine 3',5'-cyclic monophosphate (cAMP) concentrations in muscle, but no difference in plasma catecholamines. Twenty-five hours after CTX treatment, GLUT-4 protein in both soleus and red gastrocnemius muscles was decreased, whereas no change in GLUT-1 protein content was found. In contrast, GLUT-4 mRNA was unchanged, but transcripts for GLUT-1 were increased > or = 150% in all three muscles from CTX-treated rats. The findings suggest that CTX via increased cAMP impairs basal as well as insulin- and contraction-stimulated muscle glucose transport, at least in part from a decrease in intramuscular GLUT-4 protein.


Endocrinology ◽  
2002 ◽  
Vol 143 (11) ◽  
pp. 4295-4303 ◽  
Author(s):  
M. Lucia Gavete ◽  
Maria Agote ◽  
M. Angeles Martin ◽  
Carmen Alvarez ◽  
Fernando Escriva

Abstract The high energy demands of myocardium are met through the metabolism of lipids and glucose. Importantly, enhanced glucose utilization rates are crucial adaptations of the cardiac cell to some pathological conditions, such as hypertrophy and ischemia, but the effects of undernutrition on heart glucose metabolism are unknown. Our previous studies have shown that undernutrition increases insulin-induced glucose uptake by skeletal muscle. Consequently, we considered the possibility of a similar adaptation in the heart. With this aim, undernourished rats both in the basal state and after euglycemic hyperinsulinemic clamps were used to determine the following parameters in myocardium: glucose uptake, glucose transporter (GLUT) content, and some key components of the insulin signaling cascade. Heart membranes were prepared by subcellular fractionation in sucrose gradients. Although GLUT-4, GLUT-1, and GLUT-3 proteins and GLUT-4/1 mRNAs were reduced by undernutrition, basal and insulin-stimulated 2-deoxyglucose uptake were significantly enhanced. Phosphoinositol 3-kinase activity remained greater than control values in both conditions. The abundance of p85α and p85β regulatory subunits of phosphoinositol 3-kinase was increased as was phospho-Akt during hyperinsulinemia. These changes seem to improve the insulin stimulus of GLUT-1 translocation, as its content was increased at the surface membrane. Such adaptations associated with undernutrition must be crucial to improvement of cardiac glucose uptake.


1998 ◽  
Vol 274 (1) ◽  
pp. E184-E191 ◽  
Author(s):  
Jørgen F. P. Wojtaszewski ◽  
Allan B. Jakobsen ◽  
Thorkil Ploug ◽  
Erik A. Richter

It has been postulated that the perfused rat hindlimb is unsuitable for measurements of muscle glucose transport [P. Hansen, E. Gulve, J. Gao, J. Schluter, M. Mueckler, and J. Holloszy. Am. J. Physiol. 268 ( Cell Physiol. 37): C30–C35, 1995]. The aim of the present study was therefore to critically evaluate the suitability of this preparation for glucose transport measurements using the extracellular marker mannitol and the glucose analogs 3- O-methyl-d-glucose or 2-deoxy-d-glucose. In all three muscle fiber types studied, the rate of 2-deoxy-d-glucose uptake during perfusion was linear from 1 to 40 min during maximal insulin stimulation and from 1 to 15 min during maximal electrical stimulation. Uptake of 2-deoxy-d-glucose was not increased by an increase in perfusate flow. Combined stimulation with a maximal insulin concentration and electrical stimulation elicited additive effects on 2-deoxy-d-glucose uptake in slow- and fast-twitch oxidative but not in fast-twitch glycolytic muscle fibers. Furthermore, in muscles having high glucose transport capacities 3- O-methyl-d-glucose is less suitable than 2-deoxy-d-glucose because of rapidly developing nonlinearity of accumulation. Our findings clearly demonstrate that the perfused hindlimb is suitable for measurements of muscle glucose transport and that the most feasible glucose analog for this purpose is 2-deoxy-d-glucose.


Sign in / Sign up

Export Citation Format

Share Document