scholarly journals Role of the JAK2/STAT pathway and losartan in human glomerular mesangial cell senescence

2010 ◽  
Vol 3 (3) ◽  
Author(s):  
Wang
2002 ◽  
Vol 277 (37) ◽  
pp. 33683-33689 ◽  
Author(s):  
John Martin ◽  
Lisa V. Eynstone ◽  
Malcolm Davies ◽  
John D. Williams ◽  
Robert Steadman

Pneumologie ◽  
2013 ◽  
Vol 67 (05) ◽  
Author(s):  
J Eschenbrenner ◽  
W Janssen ◽  
B Kojonazarov ◽  
K Murmann ◽  
A Ghofrani ◽  
...  

Author(s):  
Yi Qian ◽  
Yan Chen ◽  
Xiaoming Li

AbstractChronic neutrophilic leukemia (CNL) is a rare but serious myeloid malignancy. In a review of reported cases for WHO-defined CNL, CSF3R mutation is found in about 90% cases and confirmed as the molecular basis of CNL. Concurrent mutations are observed in CSF3R-mutated CNL patients, including ASXL1, SETBP1, SRSF2, JAK2, CALR, TET2, NRAS, U2AF1, and CBL. Both ASXL1 and SETBP1 mutations in CNL have been associated with a poor prognosis, whereas, SRSF2 mutation was undetermined. Our patient was a 77-year-old man and had no significant past medical history and symptoms with leukocytosis. Bone marrow (BM) aspirate and biopsy revealed a markedly hypercellular marrow with prominent left-shifted granulopoiesis. Next-generation sequencing (NGS) of DNA from the BM aspirate of a panel of 28 genes, known to be pathogenic in MDS/MPN, detected mutations in CSF3R, SETBP1, and SRSF2, and a diagnosis of CNL was made. The patient did not use a JAK-STAT pathway inhibitor (ruxolitinib) but started on hydroxyurea and alpha-interferon and developed pruritus after 4 months of diagnosis and nasal hemorrhage 1 month later. Then, the patient was diagnosed with CNL with AML transformation and developed intracranial hemorrhage and died. We repeated NGS and found that three additional mutations were detected: ASXL1, PRKDC, MYOM2; variant allele frequency (VAF) of the prior mutations in CSF3R, SETBP1, and SRSF2 increased. The concurrence of CSF3RT618I, ASXL1, SETBP1, and SRSF2 mutation may be a mutationally detrimental combination and contribute to disease progression and AML transformation, as well as the nonspecific treatment of hydroxyurea and alpha-interferon, but the significance and role of PRKDC and MYOM2 mutations were not undetermined.


2021 ◽  
Vol 22 (14) ◽  
pp. 7589
Author(s):  
Anberitha T. Matthews ◽  
Hitesh Soni ◽  
Katherine E. Robinson-Freeman ◽  
Theresa A. John ◽  
Randal K. Buddington ◽  
...  

Doxorubicin (DOX), a category D pregnancy drug, is a chemotherapeutic agent that has been shown in animal studies to induce fetal toxicity, including renal abnormalities. Upregulation of the transient receptor potential cation (TRPC) 6 channel is involved in DOX-induced podocyte apoptosis. We have previously reported that TRPC6-mediated Ca2+ signaling promotes neonatal glomerular mesangial cell (GMC) death. However, it is unknown whether DOX alters mesangial TRPC expression or viability in the fetus. In this study, cell growth was tracked in control and DOX-treated primary GMCs derived from fetal pigs. Live-cell imaging demonstrated that exposure to DOX inhibited the proliferation of fetal pig GMCs and induced cell death. DOX did not alter the TRPC3 expression levels. By contrast, TRPC6 protein expression in the cells was markedly reduced by DOX. DOX treatment also attenuated the TRPC6-mediated intracellular Ca2+ elevation. DOX stimulated mitochondrial reactive oxygen species (mtROS) generation and mitophagy by the GMCs. The DOX-induced mtROS generation and apoptosis were reversed by the mitochondria-targeted antioxidant mitoquinone. These data suggest that DOX-induced fetal pig GMC apoptosis is independent of TRPC6 channel upregulation but requires mtROS production. The mtROS-dependent GMC death may contribute to DOX-induced fetal nephrotoxicity when administered prenatally.


Sign in / Sign up

Export Citation Format

Share Document