scholarly journals siRNA-mediated knockdown of hTDE2 retards cell cycle progression through transcriptional activation of p21

2014 ◽  
Vol 31 (3) ◽  
pp. 1314-1322 ◽  
Author(s):  
WEI-HUA REN ◽  
CHEN-YI YANG ◽  
XIAN-MEI YANG ◽  
LONG YU
2007 ◽  
Vol 27 (23) ◽  
pp. 8364-8373 ◽  
Author(s):  
J. Veis ◽  
H. Klug ◽  
M. Koranda ◽  
G. Ammerer

ABSTRACT In budding yeast (Saccharomyces cerevisiae), the periodic expression of the G2/M-specific gene CLB2 depends on a DNA binding complex that mediates its repression during G1 and activation from the S phase to the exit of mitosis. The switch from low to high expression levels depends on the transcriptional activator Ndd1. We show that the inactivation of the Sin3 histone deacetylase complex bypasses the essential role of Ndd1 in cell cycle progression. Sin3 and its catalytic subunit Rpd3 associate with the CLB2 promoter during the G1 phase of the cell cycle. Both proteins dissociate from the promoter at the onset of the S phase and reassociate during G2 phase. Sin3 removal coincides with a transient increase in histone H4 acetylation followed by the expulsion of at least one nucleosome from the promoter region. Whereas the first step depends on Cdc28/Cln1 activity, Ndd1 function is required for the second step. Since the removal of Sin3 is independent of Ndd1 recruitment and Cdc28/Clb activity it represents a unique regulatory step which is distinct from transcriptional activation.


2009 ◽  
Vol 69 (22) ◽  
pp. 8563-8571 ◽  
Author(s):  
K. Lefkimmiatis ◽  
M. F. Caratozzolo ◽  
P. Merlo ◽  
A. M. D'Erchia ◽  
B. Navarro ◽  
...  

1996 ◽  
Vol 314 (3) ◽  
pp. 713-721 ◽  
Author(s):  
Kevin M. RYAN ◽  
George D. BIRNIE

The myc family of proto-oncogenes is believed to be involved in the establishment of many types of human malignancy. The members of this family have been shown to function as transcription factors, and through a designated target sequence bring about continued cell-cycle progression, cellular immortalization and blockages to differentiation in many lineages. However, while much of the recent work focusing on the c-myc oncogene has provided some very important advances, it has also brought to light a large amount of conflicting data as to the mechanism of action of the gene product. In this regard, it has now been shown that c-myc is effective in transcriptional repression as well as transcriptional activation and, perhaps more paradoxically, that it has a role in programmed cell death (apoptosis) as well as in processes of cell-cycle progression. In addition, particular interest has surrounded the distinct roles of the two alternative translation products of the c-myc gene, c-Myc 1 and c-Myc 2. The intriguing observation that the ratio of c-Myc 1 to c-Myc 2 increases markedly upon cellular quiescence led to the discovery that the enforced expression of the two proteins individually showed that c-Myc 2 stimulates cell growth, whereas c-Myc 1 appears to be growth suppressing. Clearly, the disparities in the activities of c-Myc, together with the consistent occurrence of mutations of c-myc in human malignancies, means that, although reaching an understanding of the functions of the myc gene family might not be simple, it remains well worthy of pursuit.


2001 ◽  
Vol 12 (12) ◽  
pp. 4066-4077 ◽  
Author(s):  
Jihe Zhao ◽  
Richard Pestell ◽  
Jun-Lin Guan

Integrin-mediated cell adhesion to the extracellular matrix is required for normal cell growth. Cyclin D1 is a key regulator of G1-to-S phase progression of the cell cycle. Our previous studies have demonstrated that integrin signaling through focal adhesion kinase (FAK) plays a role in the regulation of cell cycle progression, which correlates with changes in the expression of cyclin D1 and the cdk inhibitor, p21, induced by FAK. In this report, we first investigated the roles of both cyclin D1 and p21 in the regulation of cell cycle progression by FAK. We found that overexpression of a dominant-negative FAK mutant ΔC14 suppressed cell cycle progression in p21−/− cells as effectively as in the control p21+/+ cells. Furthermore, we found that overexpression of ectopic cyclin D1 could rescue cell cycle inhibition by ΔC14. These results suggested that cyclin D1, but not p21, was the primary functional target of FAK signaling pathways in cell cycle regulation. We then investigated the mechanisms underlying the regulation of cyclin D1 expression by FAK signaling. Using Northern blotting and cyclin D1 promoter/luciferase assays, we showed that FAK signaling regulated cyclin D1 expression at the transcriptional level. Using a series of cyclin D1 promoter mutants in luciferase assays as well as electrophoretic mobility shift assays (EMSA), we showed that the EtsB binding site mediated cyclin D1 promoter regulation by FAK. Finally, we showed that FAK regulation of cyclin D1 depends on integrin-mediated cell adhesion and is likely through its activation of the Erk signaling pathway. Together, these studies demonstrate that transcriptional regulation of cyclin D1 by FAK signaling pathways contributes to the regulation of cell cycle progression in cell adhesion.


2020 ◽  
Vol 80 (7) ◽  
pp. 1611-1611
Author(s):  
Konstantinos Lefkimmiatis ◽  
Mariano Francesco Caratozzolo ◽  
Paola Merlo ◽  
Anna Maria D'Erchia ◽  
Beatriz Navarro ◽  
...  

2007 ◽  
Vol 28 (1) ◽  
pp. 468-486 ◽  
Author(s):  
James J. Pesavento ◽  
Hongbo Yang ◽  
Neil L. Kelleher ◽  
Craig A. Mizzen

ABSTRACT Methylation of histone H4 at lysine 20 (K20) has been implicated in transcriptional activation, gene silencing, heterochromatin formation, mitosis, and DNA repair. However, little is known about how this modification is regulated or how it contributes to these diverse processes. Metabolic labeling and top-down mass spectrometry reveal that newly synthesized H4 is progressively methylated at K20 during the G2, M, and G1 phases of the cell cycle in a process that is largely inescapable and irreversible. Approximately 98% of new H4 becomes dimethylated within two to three cell cycles, and K20 methylation turnover in vivo is undetectable. New H4 is methylated regardless of prior acetylation, and acetylation occurs predominantly on K20-dimethylated H4, refuting the hypothesis that K20 methylation antagonizes H4 acetylation and represses transcription epigenetically. Despite suggestions that it is required for normal mitosis and cell cycle progression, K20 methylation proceeds normally during colchicine treatment. Moreover, delays in PR-Set7 synthesis and K20 methylation which accompany altered cell cycle progression during sodium butyrate treatment appear to be secondary to histone hyperacetylation or other effects of butyrate since depletion of PR-Set7 did not affect cell cycle progression. Together, our data provide an unbiased perspective of the regulation and function of K20 methylation.


1993 ◽  
Vol 340 (1293) ◽  
pp. 351-360 ◽  

Unlike early embryonic cleavage divisions in certain animals, cell-cycle progression in yeast and probably also in all metazoan somatic cells requires the periodic transcriptional activation of certain key genes. Thus far, the only clear examples are genes that encode a class of unstable ‘cyclin’ proteins, which bind and activate the cdc2/Cdc28 protein kinase: the G1-specific cyclins encoded by CLN1 and CLN2 , a B-type cyclin implicated in DNA replication encoded by CLB5 ; and four B-type cyclins involved in mitosis encoded by CLB1, 2, 3, 4. CLN1, CLN2 , and CLB5 are transcribed in late G1, as cells undergo Start. A transcription factor composed of Swi4 and Swi6 proteins (called SBF) activates CLN1 and CLN2 transcription via a positive feedback loop in which Cln proteins activate their own transcription. A different but related transcription factor called MBF seems responsible for the late G1-specific transcription of most DNA replication genes including CLB5 . We have purified MBF and shown that it contains Swi6 and a 110-120 kDa protein distinct from Swi4 (pl20) that contacts DNA. Thus, we propose that SBF and MBF share a common regulatory subunit (Swi6) but recognize their promoter elements via distinct DNA binding subunits.


Sign in / Sign up

Export Citation Format

Share Document