scholarly journals A DNA barcode library for the water mites of Montenegro

2021 ◽  
Vol 9 ◽  
Author(s):  
Vladimir Pešić ◽  
Andrzej Zawal ◽  
Ana Manović ◽  
Aleksandra Bańkowska ◽  
Milica Jovanović

Water mites (Acari, Hydrachnidia) are a significant component of freshwater ecosystems inhabiting a wide range of aquatic habitats. This study provides a first comprehensive DNA barcode library for the water mites of Montenegro. DNA barcodes were analysed from 233 specimens of water mites morphologically assigned to 86 species from 28 genera and 15 families. In the course of the study, four species, i.e. Lebertia reticulata (Koenike, 1919), Atractides inflatipalpis K.Viets, 1950, A. latipes (Szalay, 1935) and Parabrachypoda montii (Maglio, 1924) were molecularly confirmed as new for Montenegro and three species, i.e. Protzia octopora Lundblad, 1954, Piona laminata (Thor, 1901) and Unionicola ypsilophora (Bonz, 1783) are new for the Balkan Peninsula. Results are analysed using the Barcode Index Number system (BIN) and the Refined Single Linkage (RESL) of BOLD. The BIN assigned sequences to 98 clusters, while the RESL reveal 103 operational taxonomic units (OTUs). Unique BINs were revealed for 72 species (83.7%), whereas twelve species (14%) were characterised by two BINs and two species (2.3%) with three BINs. Amongst the studied taxa, 14 species were found with a high intraspecific sequence divergences (˃ 2.2%), emphasising the need for additional comprehensive morphological and molecu­lar analysis of these species.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Monica R. Young ◽  
Jeremy R. deWaard ◽  
Paul D. N. Hebert

AbstractAlthough mites (Acari) are abundant in many terrestrial and freshwater ecosystems, their diversity is poorly understood. Since most mite species can be distinguished by variation in the DNA barcode region of cytochrome c oxidase I, the Barcode Index Number (BIN) system provides a reliable species proxy that facilitates large-scale surveys. Such analysis reveals many new BINs that can only be identified as Acari until they are examined by a taxonomic specialist. This study demonstrates that the Barcode of Life Datasystem’s identification engine (BOLD ID) generally delivers correct ordinal and family assignments from both full-length DNA barcodes and their truncated versions gathered in metabarcoding studies. This result was demonstrated by examining BOLD ID’s capacity to assign 7021 mite BINs to their correct order (4) and family (189). Identification success improved with sequence length and taxon coverage but varied among orders indicating the need for lineage-specific thresholds. A strict sequence similarity threshold (86.6%) prevented all ordinal misassignments and allowed the identification of 78.6% of the 7021 BINs. However, higher thresholds were required to eliminate family misassignments for Sarcoptiformes (89.9%), and Trombidiformes (91.4%), consequently reducing the proportion of BINs identified to 68.6%. Lineages with low barcode coverage in the reference library should be prioritized for barcode library expansion to improve assignment success.


2020 ◽  
Vol 8 ◽  
Author(s):  
Renate Wöger ◽  
Roland Wöger ◽  
Matthias Nuss

Identification of pyraloid species is often hampered by highly similar external morphology requiring microscopic dissection of genitalia. This becomes especially obvious when mass samples from ecological studies or insect monitoring have to be analysed. DNA barcode sequences could accelerate identification, but are not available for most pyraloid species from New Zealand. Hence, we are presenting a first DNA-barcode library for this group, providing 440 COI barcodes (cytochrome C oxidase I sequences) for 73 morphologically-identified species, which is 29% of Pyraloidea known from New Zealand. Results are analysed using the Barcode Index Number system (BIN) of BOLD and the Automatic Barcode Gap Discovery method (ABGD). Using BIN, the 440 barcodes reveal 82 clusters. A perfect match between BIN assignment and morphological identification was found for 63 species (86.3%). Four species (5.5%) share BINs, each with two species in one BIN, of which Glaucocharis epiphaea and Glaucocharis harmonica even share the same barcode. In contrast, six species (8.2%) split into two or more BINs, with the highest number of five BINs for Orocrambus ramosellus. The interspecific variation of all collected specimens of New Zealand Pyraloidea averages 12.54%. There are deep intraspecific divergences (> 2%) in seven species, for instance Orocrambus vulgaris with up to 6.6% and Scoparia ustimacula with 5.5%. Using ABGD, the 440 barcodes reveal 71 or 88 operational taxonomic units (OTUs), depending on the preferred partition. A perfect match between OTU and morphological identification was found for 56 species (76.7%) or 62 species (84.9%). ABGD delivers four or seven species sharing OTUs and four or ten species split into more than one OTU. Morphological re-examination, as well as the analysis of a concatenated dataset of COI and the nuclear markers EF1α and GADPH for species split into more than one BIN or OTU, do not support a higher number of species. Likewise, there is no evidence for Wolbachia infection as a trigger for these sequence variations.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Hedvig Csapó ◽  
Paula Krzywoźniak ◽  
Michał Grabowski ◽  
Remi Wattier ◽  
Karolina Bącela-Spychalska ◽  
...  

Abstract Gammarus roeselii Gervais, 1835 is a morphospecies with a wide distribution range in Europe. The Balkan Peninsula is known as an area of pre-Pleistocene cryptic diversification within this taxon, resulting in at least 13 Molecular Operational Taxonomic Units (MOTUs). The morphospecies diversified there during Neogene and has probably invaded other parts of the continent very recently, in postglacial or even historical times. Thus, the detailed goals of our study were to (1) identify which lineage(s) colonized Central-Western Europe (CWE), (2) determine their possible geographical origin, (3) verify, whether the colonisation was associated with demographic changes. In total, 663 individuals were sequenced for the cytochrome oxidase I (COI) barcoding fragment and 137 individuals for the internal transcribed spacer II (ITS2). We identified two MOTUs in the study area with contrasting Barcode Index Number and haplotype diversities. The Pannonian Basin (PB) appeared to be a potential ice age refugium for the species, while CWE was colonised by a single lineage (also present in PB), displaying low genetic diversity. Our results suggest that G. roeselii is a relatively recent coloniser in CWE, starting demographic expansion around 10 kya.


Diversity ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 329
Author(s):  
Lucia Montes-Ortiz ◽  
Manuel Elías-Gutiérrez

Water mites represent the most diverse and abundant group of Arachnida in freshwater ecosystems, with about 6000 species described; however, it is estimated that this number represents only 30% of the total expected species. Despite having strong biotic interactions with their community and having the potential to be exceptional bioindicators, they are frequently excluded from studies of water quality or ecology, due to actual and perceived difficulties of taxonomic identification in this group. The objective of this study is to use the variations in the sequences of the mitochondrial cytochrome oxidase subunit I (COI), also known as the DNA barcodes region, as a tool to assess the diversity of water mites at 24 sites in the Yucatan Peninsula of Mexico. We found 77 genetic groups or putative species corresponding to 18 genera: Arrenurus, Atractides, Centrolimnesia, Eylais, Geayia, Hydrodroma, Hydryphantes, Hygrobates, Koenikea, Krendowskia, Limnesia, Limnochares, Mamersellides, Mideopsis, Neumania, Piona, Torrenticola, and Unionicola. This was significant, since there are only 35 species described for this region. Furthermore, this molecular information has allowed us to infer that there are characteristic assemblies per site. These data will facilitate the incorporation of water mites in different studies while the curatorial work continues to assign a Linnaean name.


PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e4577 ◽  
Author(s):  
Nadine Havemann ◽  
Martin M. Gossner ◽  
Lars Hendrich ◽  
Jèrôme Morinière ◽  
Rolf Niedringhaus ◽  
...  

With about 5,000 species worldwide, the Heteroptera or true bugs are the most diverse taxon among the hemimetabolous insects in aquatic and semi-aquatic ecosystems. Species may be found in almost every freshwater environment and have very specific habitat requirements, making them excellent bioindicator organisms for water quality. However, a correct determination by morphology is challenging in many species groups due to high morphological variability and polymorphisms within, but low variability between species. Furthermore, it is very difficult or even impossible to identify the immature life stages or females of some species, e.g., of the corixid genus Sigara. In this study we tested the effectiveness of a DNA barcode library to discriminate species of the Gerromorpha and Nepomorpha of Germany. We analyzed about 700 specimens of 67 species, with 63 species sampled in Germany, covering more than 90% of all recorded species. Our library included various morphological similar taxa, e.g., species within the genera Sigara and Notonecta as well as water striders of the genus Gerris. Fifty-five species (82%) were unambiguously assigned to a single Barcode Index Number (BIN) by their barcode sequences, whereas BIN sharing was observed for 10 species. Furthermore, we found monophyletic lineages for 52 analyzed species. Our data revealed interspecific K2P distances with below 2.2% for 18 species. Intraspecific distances above 2.2% were shown for 11 species. We found evidence for hybridization between various corixid species (Sigara, Callicorixa), but our molecular data also revealed exceptionally high intraspecific distances as a consequence of distinct mitochondrial lineages for Cymatia coleoptrata and the pygmy backswimmer Plea minutissima. Our study clearly demonstrates the usefulness of DNA barcodes for the identification of the aquatic Heteroptera of Germany and adjacent regions. In this context, our data set represents an essential baseline for a reference library for bioassessment studies of freshwater habitats using modern high-throughput technologies in the near future. The existing data also opens new questions regarding the causes of observed low inter- and high intraspecific genetic variation and furthermore highlight the necessity of taxonomic revisions for various taxa, combining both molecular and morphological data.


Diversity ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 618
Author(s):  
Jiehong Wei ◽  
Renxie Wu ◽  
Yongshuang Xiao ◽  
Haoran Zhang ◽  
Laith A. Jawad ◽  
...  

The genus Pampus contains seven valid species, which are commercially important fishery species in the Indo-Pacific area. Due to their highly similar external morphologies, Pampus liuorum has been proposed as a synonym of Pampus cinereus. In this study, partial sequences of COI (582 bp) and Cytb (1077 bp) were presented as potential DNA barcodes of six valid Pampus species and the controversial species P. liuorum. A species delimitation of the seven Pampus species was performed to verify their validities. Explicit COI barcoding gaps were found in all assessed species, except for P. liuorum and P. cinereus, which resulted from their smaller interspecific K2P distance (0.0034–0.0069). A Cytb barcoding gap (0.0200) of the two species was revealed, with a K2P distance ranging from 0.0237 to 0.0277. The longer Cytb fragment is thus a more suitable DNA barcode for the genus Pampus. In the genetic tree, using concatenated Cytb and COI sequences, the seven species reciprocally formed well-supported clades. Species delimitations with ABGD, GMYC, and bPTP models identified seven operational taxonomic units, which were congruent with the seven morphological species. Therefore, all of the seven analyzed species, including P. liuorum, should be kept as valid species.


2017 ◽  
Vol 68 (10) ◽  
pp. 1788 ◽  
Author(s):  
M. E. Carew ◽  
S. J. Nichols ◽  
J. Batovska ◽  
R. St Clair ◽  
N. P. Murphy ◽  
...  

Macroinvertebrates are widely used for monitoring freshwater ecosystems. In most monitoring programs, identifications take substantial time and expense. Methods that improve the speed, accuracy and cost-effectiveness of macroinvertebrate identification would benefit such programs. Increasingly, DNA barcodes are being used to provide accurate species-level identifications and have the potential to change how macroinvertebrates are routinely identified. Herein we discuss the need for DNA barcodes of freshwater macroinvertebrates with particular reference to Australia. We examine the use of DNA barcodes for species identification and compare DNA barcoding efforts of macroinvertebrates from Australia with those globally. We consider the role of high-throughput sequencing of DNA barcodes in freshwater bioassessment and its potential use in biosurveillance. Finally, we outline a strategy for developing a comprehensive national DNA barcode database for Australian freshwater macroinvertebrates and present the initial efforts in creating this database.


Author(s):  
Nicola Molinari ◽  
Jonathan P. Mailoa ◽  
Boris Kozinsky

We show that strong cation-anion interactions in a wide range of lithium-salt/ionic liquid mixtures result in a negative lithium transference number, using molecular dynamics simulations and rigorous concentrated solution theory. This behavior fundamentally deviates from the one obtained using self-diffusion coefficient analysis and agrees well with experimental electrophoretic NMR measurements, which accounts for ion correlations. We extend these findings to several ionic liquid compositions. We investigate the degree of spatial ionic coordination employing single-linkage cluster analysis, unveiling asymmetrical anion-cation clusters. Additionally, we formulate a way to compute the effective lithium charge that corresponds to and agrees well with electrophoretic measurements and show that lithium effectively carries a negative charge in a remarkably wide range of chemistries and concentrations. The generality of our observation has significant implications for the energy storage community, emphasizing the need to reconsider the potential of these systems as next generation battery electrolytes.<br>


Author(s):  
J.-C. Huang ◽  
X.-Y. Li ◽  
Y.-P. Li ◽  
R.-S. Zhang ◽  
D.-B. Chen ◽  
...  

Samia ricini (Wm. Jones) and Samia cynthia (Drury) (Lepidoptera: Saturniidae) have been used as traditional sources of food as well as silk-producing insects. However, the phylogenetic relationship between the two silkworms remains to be addressed. In this study, the mitochondrial cytochrome c oxidase subunit 1 (COI) gene sequences corresponding to DNA barcodes from 13 Samia species were analysed, and a DNA barcode-based phylogenetic framework for these Samia species was provided. Phylogenetic analysis showed that multiple individuals of a species could be clustered together. Our analysis revealed a close relationship among Samia yayukae Paukstadt, Peigler and Paukstadt, Samia abrerai Naumann and Peigler, Samia kohlli Naumann and Peigler, Samia naessigi Naumann and Peigler, Samia naumanni Paukstadt, Peigler and Paukstadt, and Samia kalimantanensis Paukstadt and Paukstadt. The mixed clustering relationship and low Kimura-2-parameter (K2P) genetic distance (0.006) between individuals of S. ricini and Samia canningi (Hutton) indicated that the cultivated silkworm S. ricini was derived from the non-cultivated silkworm S. canningi. The remote phylogenetic relationship and high K2P genetic distance (0.039) indicated that S. ricini and S. cynthia are distinct species, thus providing solid molecular evidence that they had entirely independent origins. The relationships between S. kalimantanensis and S. naumanni and between S. cynthia and Samia wangi Naumann and Peigler, as well as the potential cryptic species within S. abrerai were also discussed. This is the first study to assess the DNA barcodes of the genus Samia, which supplements the knowledge of species identification and provides the first molecular phylogenetic framework for Samia species.


Sign in / Sign up

Export Citation Format

Share Document