scholarly journals Operationalizing Plant Traits

Author(s):  
Jens Kattge

Plant traits – the morphological, anatomical, physiological, biochemical and phenological characteristics of plants and their organs – determine how primary producers respond to environmental factors, affect other trophic levels, influence ecosystem processes and services and provide a link from species richness to ecosystem functional diversity. Trait data thus represent the raw material for a wide range of research from evolutionary biology, community and functional ecology to biogeography. The importance of these topics dictates the urgent need for more and better data and improved data availability and applicability, however, producing larger datasets that allow for more powerful, synthetic analyses increasingly relies on the integration of small, focused studies. Operationalizing plant functional traits has therefore been identified a key issue in plant and vegetation ecology. In 2007 the International Geosphere Bbiosphere Program (IGBP) and DIVERSITAS (together now Future Earth) initiated a global database of plant traits to make the data available for trait-based approaches in ecology and vegetation modelling. This was the start of the TRY initiative (https://www.try-db.org). In 2019 the TRY database contains about 12 million trait records for more than 300,000 plant taxa and 2000 traits. The data are publicly available under a CC BY license and so far contributed to more than 200 scientific publications. Based on experience in this bottom-up exercise, my presentation will provide a subjective view on what has been essential to make progress towards operationalizing plant traits and how far the plant trait community has progressed.

2020 ◽  
Author(s):  
Jens Kattge ◽  
Gerhard Boenisch ◽  
Sandra Diaz ◽  
Sandra Lavorel ◽  
Colin Prentice ◽  
...  

<p>Plant traits – the morphological, anatomical, physiological, biochemical and phenological characteristics of plants – determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystems properties and derived benefits and detriments to people. Plant trait data thus represent the essential basis for a vast area of research spanning evolutionary biology, community and functional ecology, biodiversity conservation, ecosystem and landscape management and restoration, biogeography to earth system modeling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community. Increasingly the TRY database also supports new frontiers of trait-based research, including identi:cation of data gaps and subsequent mobilization or measurement of new data. To support this development, in this article we take stock of trait data compiled in TRY and analyze emerging patterns of data coverage, representativeness, and gaps. Best species coverage is achieved for categorical traits (stable within species) relevant to determine plant functional types commonly used in global vegetation models. For the trait ‘plant growth form’ complete species coverage is within reach. However, most traits relevant for ecology and vegetation modeling are characterized by intraspecific variation and trait-environmental relationships. These traits have to be measured on individual plants in their respective environment: completeness at global scale is impossible and representativeness challenging. Due to the sheer amount of data in the TRY database, machine learning for trait prediction is promising - but does not add new data. We therefore conclude that reducing data gaps and biases by further and more systematic mobilization of trait data and new in-situ trait measurements must continue to be a high priority. This can only be achieved by a community effort in collaboration with other initiatives.</p>


2013 ◽  
Vol 61 (3) ◽  
pp. 167 ◽  
Author(s):  
N. Pérez-Harguindeguy ◽  
S. Díaz ◽  
E. Garnier ◽  
S. Lavorel ◽  
H. Poorter ◽  
...  

Plant functional traits are the features (morphological, physiological, phenological) that represent ecological strategies and determine how plants respond to environmental factors, affect other trophic levels and influence ecosystem properties. Variation in plant functional traits, and trait syndromes, has proven useful for tackling many important ecological questions at a range of scales, giving rise to a demand for standardised ways to measure ecologically meaningful plant traits. This line of research has been among the most fruitful avenues for understanding ecological and evolutionary patterns and processes. It also has the potential both to build a predictive set of local, regional and global relationships between plants and environment and to quantify a wide range of natural and human-driven processes, including changes in biodiversity, the impacts of species invasions, alterations in biogeochemical processes and vegetation–atmosphere interactions. The importance of these topics dictates the urgent need for more and better data, and increases the value of standardised protocols for quantifying trait variation of different species, in particular for traits with power to predict plant- and ecosystem-level processes, and for traits that can be measured relatively easily. Updated and expanded from the widely used previous version, this handbook retains the focus on clearly presented, widely applicable, step-by-step recipes, with a minimum of text on theory, and not only includes updated methods for the traits previously covered, but also introduces many new protocols for further traits. This new handbook has a better balance between whole-plant traits, leaf traits, root and stem traits and regenerative traits, and puts particular emphasis on traits important for predicting species’ effects on key ecosystem properties. We hope this new handbook becomes a standard companion in local and global efforts to learn about the responses and impacts of different plant species with respect to environmental changes in the present, past and future.


2016 ◽  
Vol 64 (8) ◽  
pp. 715 ◽  
Author(s):  
N. Pérez-Harguindeguy ◽  
S. Díaz ◽  
E. Garnier ◽  
S. Lavorel ◽  
H. Poorter ◽  
...  

Plant functional traits are the features (morphological, physiological, phenological) that represent ecological strategies and determine how plants respond to environmental factors, affect other trophic levels and influence ecosystem properties. Variation in plant functional traits, and trait syndromes, has proven useful for tackling many important ecological questions at a range of scales, giving rise to a demand for standardised ways to measure ecologically meaningful plant traits. This line of research has been among the most fruitful avenues for understanding ecological and evolutionary patterns and processes. It also has the potential both to build a predictive set of local, regional and global relationships between plants and environment and to quantify a wide range of natural and human-driven processes, including changes in biodiversity, the impacts of species invasions, alterations in biogeochemical processes and vegetation–atmosphere interactions. The importance of these topics dictates the urgent need for more and better data, and increases the value of standardised protocols for quantifying trait variation of different species, in particular for traits with power to predict plant- and ecosystem-level processes, and for traits that can be measured relatively easily. Updated and expanded from the widely used previous version, this handbook retains the focus on clearly presented, widely applicable, step-by-step recipes, with a minimum of text on theory, and not only includes updated methods for the traits previously covered, but also introduces many new protocols for further traits. This new handbook has a better balance between whole-plant traits, leaf traits, root and stem traits and regenerative traits, and puts particular emphasis on traits important for predicting species' effects on key ecosystem properties. We hope this new handbook becomes a standard companion in local and global efforts to learn about the responses and impacts of different plant species with respect to environmental changes in the present, past and future.


2020 ◽  
Vol 637 ◽  
pp. 225-235 ◽  
Author(s):  
MA Ladds ◽  
MH Pinkerton ◽  
E Jones ◽  
LM Durante ◽  
MR Dunn

Marine food webs are structured, in part, by predator gape size. Species found in deep-sea environments may have evolved such that they can consume prey of a wide range of sizes, to maximise resource intake in a low-productivity ecosystem. Estimates of gape size are central to some types of ecosystem model that determine which prey are available to predators, but cannot always be measured directly. Deep-sea species are hypothesized to have larger gape sizes than shallower-water species relative to their body size and, because of pronounced adaptive foraging behaviour, show only a weak relationship between gape size and trophic level. Here we present new data describing selective morphological measurements and gape sizes of 134 osteichthyan and chondrichthyan species from the deep sea (200-1300 m) off New Zealand. We describe how gape size (height, width and area) varied with factors including fish size, taxonomy (class and order within a class) and trophic level estimated from stable isotopes. For deep-sea species, there was a strong relationship between gape size and fish size, better predicted by body mass than total length, which varied by taxonomic group. Results show that predictions of gape size can be made from commonly measured morphological variables. No relationship between gape size and trophic level was found, likely a reflection of using trophic level estimates from stable isotopes as opposed to the commonly used estimates from FishBase. These results support the hypothesis that deep-sea fish are generalists within their environment, including suspected scavenging, even at the highest trophic levels.


2015 ◽  
Vol 2 (1) ◽  
pp. 6-12
Author(s):  
Agus Sugiarta ◽  
Houtman P. Siregar ◽  
Dedy Loebis

Automation of process control in chemical plant is an inspiring application field of mechatronicengineering. In order to understand the complexity of the automation and its application requireknowledges of chemical engineering, mechatronic and other numerous interconnected studies.The background of this paper is an inherent problem of overheating due to lack of level controlsystem. The objective of this research is to control the dynamic process of desired level more tightlywhich is able to stabilize raw material supply into the chemical plant system.The chemical plant is operated within a wide range of feed compositions and flow rates whichmake the process control become difficult. This research uses modelling for efficiency reason andanalyzes the model by PID control algorithm along with its simulations by using Matlab.


2020 ◽  
Vol 26 (6) ◽  
pp. 613-618
Author(s):  
A. V. Altukhov ◽  
S. A. Tishchenko

The presented study reviews practically relevant research papers in the field of network structures, modern network business models and platforms.Aim. The study aims to elaborate and explain the concept of network structure and platform and to show the reasons for the progressiveness and potential of network organizational structure at the current stage of socio-economic and scientific development.Tasks. The authors highlight the main scientific ideas about network structures in business, including significant studies in this area; provide and explain the main terms and definitions and examine the key characteristics of network business structures; characterize “platforms” as an important concept for modern business and show the relationship between platforms and network structures.Methods. This study uses analysis of information and subsequent synthesis of new knowledge in the form of the authors’ conclusions and a wide range of relevant scientific publications of Russian and foreign authors, including original publications in English and French.Results. The history of network structures is briefly provided. Definitions and characteristics of such concepts as “network structure” and “platform” in relation to business are provided and explained by the authors.


1994 ◽  
Vol 29 (3) ◽  
pp. 207-209 ◽  
Author(s):  
H. Puzicha

Effluents from point sources (industries, communities) and diffuse inputs introduce pollutants into the water of the river Rhine and cause a basic contaminant load. The aim is to establish a biological warning system to detect increased toxicity in addition to the already existing chemical-physical monitoring system. To cover a wide range of biocides, continuous working biotests at different trophic levels (bacteria, algae, mussels, water fleas, fishes) have been developed and proved. These are checked out for sensitivity against toxicants, reaction time, validity of data and practical handling under field conditions at the river. Test-specific appropriate methods are found to differentiate between the normal range of variation and true alarm signals.


Studies of animal behavior often assume that all members of a species exhibit the same behavior. Geographic Variation in Behavior shows that, on the contrary, there is substantional variation within species across a wide range of taxa. Including work from pioneers in the field, this volume provides a balanced overview of research on behavioral characteristics that vary geographically. The authors explore the mechanisms by which behavioral differences evolve and examine related methodological issues. Taken together, the work collected here demonstrates that genetically based geographic variation may be far more widespread than previously suspected. The book also shows how variation in behavior can illuminate both behavioral evolution and general evolutionary patterns. Unique among books on behavior in its emphasis on geographic variation, this volume is a valuable new resource for students and researchers in animal behavior and evolutionary biology.


Sign in / Sign up

Export Citation Format

Share Document