behavioral evolution
Recently Published Documents


TOTAL DOCUMENTS

90
(FIVE YEARS 19)

H-INDEX

16
(FIVE YEARS 2)

2021 ◽  
Vol 55 (1) ◽  
Author(s):  
Thomas O. Auer ◽  
Michael P. Shahandeh ◽  
Richard Benton

Defining the mechanisms by which animals adapt to their ecological niche is an important problem bridging evolution, genetics, and neurobiology. We review the establishment of a powerful genetic model for comparative behavioral analysis and neuroecology, Drosophila sechellia. This island-endemic fly species is closely related to several cosmopolitan generalists, including Drosophila melanogaster, but has evolved extreme specialism, feeding and reproducing exclusively on the noni fruit of the tropical shrub Morinda citrifolia. We first describe the development and use of genetic approaches to facilitate genotype/phenotype associations in these drosophilids. Next, we survey the behavioral, physiological, and morphological adaptations of D. sechellia throughout its life cycle and outline our current understanding of the genetic and cellular basis of these traits. Finally, we discuss the principles this knowledge begins to establish in the context of host specialization, speciation, and the neurobiology of behavioral evolution and consider open questions and challenges in the field. Expected final online publication date for the Annual Review of Genetics, Volume 55 is November 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Damián G Hernández ◽  
Catalina Rivera ◽  
Jessica Cande ◽  
Baohua Zhou ◽  
David Stern ◽  
...  

Although different animal species often exhibit extensive variation in many behaviors, typically scientists examine one or a small number of behaviors in any single study. Here, we propose a new framework to simultaneously study the evolution of many behaviors. We measured the behavioral repertoire of individuals from six species of fruit flies using unsupervised techniques and identified all stereotyped movements exhibited by each species. We then fit a Generalized Linear Mixed Model to estimate the intra- and inter-species behavioral covariances, and, by using the known phylogenetic relationships among species, we estimated the (unobserved) behaviors exhibited by ancestral species. We found that much of intra-specific behavioral variation has a similar covariance structure to previously described long-time scale variation in an individual’s behavior, suggesting that much of the measured variation between individuals of a single species in our assay reflects differences in the status of neural networks, rather than genetic or developmental differences between individuals. We then propose a method to identify groups of behaviors that appear to have evolved in a correlated manner, illustrating how sets of behaviors, rather than individual behaviors, likely evolved. Our approach provides a new framework for identifying co-evolving behaviors and may provide new opportunities to study the mechanistic basis of behavioral evolution.


2021 ◽  
Vol 9 ◽  
Author(s):  
Eric R. Schuppe ◽  
Amy R. Rutter ◽  
Thomas J. Roberts ◽  
Matthew J. Fuxjager

Understanding how and why behavioral traits diversify during the course of evolution is a longstanding goal of organismal biologists. Historically, this topic is examined from an ecological perspective, where behavioral evolution is thought to occur in response to selection pressures that arise through different social and environmental factors. Yet organismal physiology and biomechanics also play a role in this process by defining the types of behavioral traits that are more or less likely to arise. Our paper explores the interplay between ecological, physiological, and mechanical factors that shape the evolution of an elaborate display in woodpeckers called the drum. Individuals produce this behavior by rapidly hammering their bill on trees in their habitat, and it serves as an aggressive signal during territorial encounters. We describe how different components of the display—namely, speed (bill strikes/beats sec–1), length (total number of beats), and rhythm—differentially evolve likely in response to sexual selection by male-male competition, whereas other components of the display appear more evolutionarily static, possibly due to morphological or physiological constraints. We synthesize research related to principles of avian muscle physiology and ecology to guide inferences about the biomechanical basis of woodpecker drumming. Our aim is to introduce the woodpecker as an ideal study system to study the physiological basis of behavioral evolution and how it relates to selection born through different ecological factors.


2021 ◽  
Vol 75 (4) ◽  
Author(s):  
Jered A. Stratton ◽  
Mark J. Nolte ◽  
Bret A. Payseur

Abstract Island populations are hallmarks of extreme phenotypic evolution. Radical changes in resource availability and predation risk accompanying island colonization drive changes in behavior, which Darwin likened to tameness in domesticated animals. Although many examples of animal boldness are found on islands, the heritability of observed behaviors, a requirement for evolution, remains largely unknown. To fill this gap, we profiled anxiety and exploration in island and mainland inbred strains of house mice raised in a common laboratory environment. The island strain was descended from mice on Gough Island, the largest wild house mice on record. Experiments utilizing open environments across two ages showed that Gough Island mice are bolder and more exploratory, even when a shelter is provided. Concurrently, Gough Island mice retain an avoidance response to predator urine. F1 offspring from crosses between these two strains behave more similarly to the mainland strain for most traits, suggesting recessive mutations contributed to behavioral evolution on the island. Our results provide a rare example of novel, inherited behaviors in an island population and demonstrate that behavioral evolution can be specific to different forms of perceived danger. Our discoveries pave the way for a genetic understanding of how island populations evolve unusual behaviors. Significance Organisms on islands are known to behave differently from mainland organisms. An absence of predators and a different set of natural resources are expected to make island organisms less anxious and more exploratory. We raised two groups of house mice, one from Gough Island in the South Atlantic and one from the mainland Eastern USA, in the same laboratory environment to see if behavioral differences between the two groups are heritable. Mice from both groups were placed in novel enclosures that are known to cause anxiety in rodents. We found that mice from the island are bolder and more exploratory in these enclosures but avoid predator odors in the same way as mainland mice. Our results show that boldness and exploration can evolve after island colonization.


2020 ◽  
Author(s):  
Jered A. Stratton ◽  
Mark J. Nolte ◽  
Bret A. Payseur

AbstractIsland populations are hallmarks of extreme phenotypic evolution. Radical changes in resource availability and predation risk accompanying island colonization drive changes in behavior, which Darwin likened to tameness in domesticated animals. Although many examples of animal boldness are found on islands, the heritability of observed behaviors, a requirement for evolution, remains largely unknown. To fill this gap, we profiled anxiety and exploration in island and mainland inbred strains of house mice raised in a common laboratory environment. The island strain was descended from mice on Gough Island, the largest wild house mice on record. Experiments utilizing open environments across two ages showed that Gough Island mice are bolder and more exploratory, even when a shelter is provided. Concurrently, Gough Island mice retain an avoidance response to predator urine. F1 offspring from crosses between these two strains behave more similarly to the mainland strain for most traits, suggesting recessive mutations contributed to behavioral evolution on the island. Our results provide a rare example of novel, inherited behaviors in an island population and demonstrate that behavioral evolution can be specific to different forms of perceived danger. Our discoveries pave the way for a genetic understanding of how island populations evolve unusual behaviors.


2020 ◽  
Vol 6 (38) ◽  
pp. eaba3126
Author(s):  
James B. Jaggard ◽  
Evan Lloyd ◽  
Anders Yuiska ◽  
Adam Patch ◽  
Yaouen Fily ◽  
...  

Environmental perturbation can drive behavioral evolution and associated changes in brain structure and function. The Mexican fish species, Astyanax mexicanus, includes eyed river-dwelling surface populations and multiple independently evolved populations of blind cavefish. We used whole-brain imaging and neuronal mapping of 684 larval fish to generate neuroanatomical atlases of surface fish and three different cave populations. Analyses of brain region volume and neural circuits associated with cavefish behavior identified evolutionary convergence in hindbrain and hypothalamic expansion, and changes in neurotransmitter systems, including increased numbers of catecholamine and hypocretin/orexin neurons. To define evolutionary changes in brain function, we performed whole-brain activity mapping associated with behavior. Hunting behavior evoked activity in sensory processing centers, while sleep-associated activity differed in the rostral zone of the hypothalamus and tegmentum. These atlases represent a comparative brain-wide study of intraspecies variation in vertebrates and provide a resource for studying the neural basis of behavioral evolution.


2020 ◽  
Author(s):  
Damián G. Hernández ◽  
Catalina Rivera ◽  
Jessica Cande ◽  
Baohua Zhou ◽  
David L. Stern ◽  
...  

Although extensive behavioral changes often exist between closely related animal species, our understanding of the genetic basis underlying the evolution of behavior has remained limited. Here, we propose a new framework to study behavioral evolution by computational estimation of ancestral behavioral repertoires. We measured the behaviors of individuals from six species of fruit flies using unsupervised techniques and identified suites of stereotyped movements exhibited by each species. We then fit a Generalized Linear Mixed Model to estimate the suites of behaviors exhibited by ancestral species, as well as the intra- and inter-species behavioral covariances. We found that much of intraspecific behavioral variation is explained by differences between individuals in the status of their behavioral hidden states, what might be called their “mood.” Lastly, we propose a method to identify groups of behaviors that appear to have evolved together, illustrating how sets of behaviors, rather than individual behaviors, likely evolved. Our approach provides a new framework for identifying co-evolving behaviors and may provide new opportunities to study the genetic basis of behavioral evolution.


2020 ◽  
Vol 122 ◽  
pp. 106291 ◽  
Author(s):  
Haipeng Cai ◽  
Xiaoqin Fu ◽  
Abdelwahab Hamou-Lhadj

Sign in / Sign up

Export Citation Format

Share Document