scholarly journals Automated Methods in Digitisation of Pinned Insects

Author(s):  
Zhengzhe Wu ◽  
Jere Kahanpää ◽  
Pasi Sihvonen ◽  
Anne Koivunen ◽  
Hannu Saarenmaa

Digitisation of natural history collections draws increasing attention. The digitised specimens not only facilitate the long-term preservation of biodiversity information but also boost the easy access and sharing of information. There are more than two billion specimens in the world’s natural history collections and pinned insect specimens compose of more than half of them (Tegelberg et al. 2014, Tegelberg et al. 2017). However, it is still a challenge to digitise pinned insect specimens with current state-of-art systems. The slowness of imaging pinned insects is due to the fact that they are essentially 3D objects and associated labels are pinned under the insect specimen. During the imaging process, the labels are often removed manually, which slows down the whole process. How can we avoid handling the labels pinned under often fragile and valuable specimens in order to increase the speed of digitsation? In our work (Saarenmaa et al. 2019) for T3.1.2 task in the ICEDIG (https://www.icedig.eu) project, we first briefly reviewed the state-of-the-art approaches on small insect digitisation. Then recent promising technological advances on imaging were presented, some of which have not yet been used for insect digitisation. It seems that one single approach will not be enough to digitise all insect collections efficiently. The approach has to be optimized based on the features of the specimens and their associated labels. To obtain a breakthrough in insect digitisation, it is necessary to utilize a combination of existing and new technologies in novel workflows. To explore the options, we identified six approaches for digitising pinned insects with the goal of minimum manipulations of labels as follows. Minimal labels: Image selected individual specimens without removing labels from the pin by using two cameras. This method suits for small insects with only one or a few well-spaced labels. Multiple webcams: Similar to the minimal labels approach, but with multiple webcams at different positions. This has been implemented in a prototype system with 12 cameras (Hereld et al. 2017) and in the ALICE system with six DSLR cameras (Price et al. 2018). Imaging of units: Similar to the multiple webcams approach, but image the entire unit (“Units” are small boxes or trays contained in drawers of collection cabinets, and are being used in most major insect collections). Camera in robot arm: Image the individual specimen or the unit with the camera mounted at a robot arm to capture large number of images from different views. Camera on rails: Similar to camera in robot arm approach, but the camera is mounted on rails to capture the unit. A 3D model of the insects and/or units can be created, and then labels are extracted. This is being prototyped by the ENTODIG-3D system (Ylinampa and Saarenmaa 2019). Terahertz time-gated multispectral imaging: Image the individual specimen with terahertz time-gated multispectral imaging devices. Minimal labels: Image selected individual specimens without removing labels from the pin by using two cameras. This method suits for small insects with only one or a few well-spaced labels. Multiple webcams: Similar to the minimal labels approach, but with multiple webcams at different positions. This has been implemented in a prototype system with 12 cameras (Hereld et al. 2017) and in the ALICE system with six DSLR cameras (Price et al. 2018). Imaging of units: Similar to the multiple webcams approach, but image the entire unit (“Units” are small boxes or trays contained in drawers of collection cabinets, and are being used in most major insect collections). Camera in robot arm: Image the individual specimen or the unit with the camera mounted at a robot arm to capture large number of images from different views. Camera on rails: Similar to camera in robot arm approach, but the camera is mounted on rails to capture the unit. A 3D model of the insects and/or units can be created, and then labels are extracted. This is being prototyped by the ENTODIG-3D system (Ylinampa and Saarenmaa 2019). Terahertz time-gated multispectral imaging: Image the individual specimen with terahertz time-gated multispectral imaging devices. Experiments on selected approaches 2 and 5 are in progress and the preliminary results will be presented.

Author(s):  
Tamar Dayan ◽  
Bella Galil

This chapter discusses the importance of museum specimens and samples. Natural history collections are archives of biodiversity, snapshots that provide a way to physically retrieve an individual specimen and through it track changes in populations and species across repeatable surveys in time and space. Growing international awareness of the potential effects on humanity due to the loss of biodiversity and the ensuing erosion of ecosystem services has reinforced the value of natural history collections, museums, and herbaria worldwide. The chapter summarizes the strengths and weaknesses of natural history collections for repeated surveys and other historical studies that require replication. Through a case study of the historical surveys and resurveys of the taxonomic exploration of the marine biota of the eastern Mediterranean Sea, it highlights the relevance of collections for ecology and conservation. Finally, it discusses prospects for future uses of natural history collections in the context of replicated research.


Author(s):  
Abraham Nieva de la Hidalga ◽  
Nicolas Cazenave ◽  
Donat Agosti ◽  
Zhengzhe Wu ◽  
Mathias Dillen ◽  
...  

Digitisation of Natural History Collections (NHC) has evolved from transcription of specimen catalogues in databases to web portals providing access to data, digital images, and 3D models of specimens. These portals increase global accessibility to specimens and help preserve the physical specimens by reducing their handling. The size of the NHC requires developing high-throughput digitisation workflows, as well as research into novel acquisition systems, image standardisation, curation, preservation, and publishing. Nowadays, herbarium sheet digitisation workflows (and fast digitisation stations) can digitise up to 6,000 specimens per day. Operating those digitisation stations in parallel, can increase the digitisation capacity. The high-resolution images obtained from these specimens, and their volume require substantial bandwidth, and disk space and tapes for storage of original digitised materials, as well as availability of computational processing resources for generating derivatives, information extraction, and publishing. While large institutions have dedicated digitisation teams that manage the whole workflow from acquisition to publishing, other institutions cannot dedicate resources to support all digitisation activities, in particular long-term storage. National and European e-infrastructures can provide an alternative solution by supporting different parts of the digitisation workflows. In the context of the Innovation and consolidation for large scale digitisation of natural heritage (ICEDIG Project 2018), three different e-infrastructures providing long-term storage have been analysed through three pilot studies: EUDAT-CINES, Zenodo, and National Infrastructures. The EUDAT-CINES pilot centred on transferring large digitised herbarium collections from the National Museum of Natural History France (MNHN) to the storage infrastructure provided by the Centre Informatique National de l’Enseignement Supérieur (CINES 2014), a European trusted digital repository. The upload, processing, and access services are supported by a combination of services provided by the European Collaborative Data Infrastructure (EUDAT CDI 2019) and CINES . The Zenodo pilot included the upload of herbarium collections from Meise Botanic Garden (APM) and other European herbaria into the Zenodo repository (Zenodo 2019). The upload, processing and access services are supported by Zenodo services, accessed by APM. The National Infrastructures pilot facilitated the upload of digital assets derived from specimens of herbarium and entomology collections held at the Finnish Museum of Natural History (LUOMUS) into the Finnish Biodiversity Information Facility (FinBIF 2019). This pilot concentrates on simplifying the integration of digitisation facilities to Finnish national e-infrastructures, using services developed by LUOMUS to access FinBIF resources. The data models employed in the pilots allow defining data schemas according to the types of collection and specimen images stored. For EUDAT-CINES, data were composed of the specimen data and its business metadata (those the institution making the deposit, in this case MNHN, considers relevant for the data objects being stored), enhanced by archiving metadata, added during the archiving process (institution, licensing, identifiers, project, archiving date, etc). EUDAT uses ePIC identifiers (ePIC 2019) to identify each deposit. The Zenodo pilot was designed to allow defining specimen data and metadata supporting indexing and access to resources. Zenodo uses DataCite Digital Object Identifiers (DOI) and the underlying data types as the main identifiers for the resources, augmented with fields based on standard TDWG vocabularies. FinBIF compiles Finnish biodiversity information to one single service for open access sharing. In FinBIF, HTTP URI based identifiers are used for all data, which link the specimen data with other information, such as images. The pilot infrastructure design reports describe features, capacities, functions and costs for each model, in three specific contexts are relevant for the implementation of the Distributed Systems of Scientific Collections (DiSSCo 2019) research infrastructure, informing the options for long-term storage and archiving digitised specimen data. The explored options allow preservation of assets and support easy access. In a wider context, the results provide a template for service evaluation in the European Open Science Cloud (EOSC 2019) which can guide similar efforts.


2018 ◽  
Vol 2 ◽  
pp. e25839
Author(s):  
Lise Stork ◽  
Andreas Weber ◽  
Eulàlia Miracle ◽  
Katherine Wolstencroft

Geographical and taxonomical referencing of specimens and documented species observations from within and across natural history collections is vital for ongoing species research. However, much of the historical data such as field books, diaries and specimens, are challenging to work with. They are computationally inaccessable, refer to historical place names and taxonomies, and are written in a variety of languages. In order to address these challenges and elucidate historical species observation data, we developed a workflow to (i) crowd-source semantic annotations from handwritten species observations, (ii) transform them into RDF (Resource Description Framework) and (iii) store and link them in a knowledge base. Instead of full-transcription we directly annotate digital field books scans with key concepts that are based on Darwin Core standards. Our workflow stresses the importance of verbatim annotation. The interpretation of the historical content, such a resolving a historical taxon to a current one, can be done by individual researchers after the content is published as linked open data. Through the storage of annotion provenance, who created the annotation and when, we allow multiple interpretations of the content to exist in parallel, stimulating scientific discourse. The semantic annotation process is supported by a web application, the Semantic Field Book (SFB)-Annotator, driven by an application ontology. The ontology formally describes the content and meta-data required to semantically annotate species observations. It is based on the Darwin Core standard (DwC), Uberon and the Geonames ontology. The provenance of annotations is stored using the Web Annotation Data Model. Adhering to the principles of FAIR (Findable, Accessible, Interoperable & Reusable) and Linked Open Data, the content of the specimen collections can be interpreted homogeneously and aggregated across datasets. This work is part of the Making Sense project: makingsenseproject.org. The project aims to disclose the content of a natural history collection: a 17,000 page account of the exploration of the Indonesian Archipelago between 1820 and 1850 (Natuurkundige Commissie voor Nederlands-Indie) With a knowledge base, researchers are given easy access to the primary sources of natural history collections. For their research, they can aggregate species observations, construct rich queries to browse through the data and add their own interpretations regarding the meaning of the historical content.


Author(s):  
Sandra Knapp ◽  
Sarah Vincent ◽  
Christos Arvanitidis ◽  
Katherine Dixey ◽  
Patricia Mergen

Any one collection of objects never tells the whole story. Enabling access to natural history collections by users external to a given institution, has a long history–even that great stay-at-home, Linnaeus, relied on specimens in the hands of others. Neglecting collections outside one’s institution results in duplication and inefficiency, as can be seen in the history of synonymy. Physical access had always been the norm, but difficult for the single individual. A student in the late 20th century had to decide if money were better spent going to one collection or another, or if the sometimes rather fuzzy photographs really represented the taxon she was working with. Loans between institutions were a way to provide access, but came with their own risks. The very individualised–to users as well as institutions–system of access provisioning still operates today but has fundamentally changed in several respects. The SYNTHESYS (Synthesis of Systematic Resources) projects brought a set of European institutions into a consortium with one aim: to provide access to natural history collections in order to stimulate their use across communities. The SYNTHESYS Transnational Access (TA) programme provided access not only to the collections of participating institutions, but also to infrastructures such as laboratories and analytical facilities. The trajectory of TA has led to a change in thinking about natural history collections, along with access to them. Because access has been subsidised at both the individual and institutional levels, participating institutions began to function more as a collective; one infrastructure, albeit loosely dispersed. In the most recent iteration of the SYNTHESYS programme, SYNTHESYS+, access has changed yet again with the times. Technological advances in imaging permit high-quality surrogates of natural history specimens to be exchanged more freely, and Virtual Access (VA) forms an integral part of the SYNTHESYS+ access programme, alongside TA. Virtual access has been operating for some time in the natural history collections community, but like TA, with individual scientists requesting images/sequences/scans from individual institutions or curators. VA, as a centralised service, will be piloted in SYNTHESYS+ in order to establish the basis for community change in access provisioning. But what next? Will we continue to need physical access to specimens and facilities as VA becomes increasingly feasible? As European collections-based institutions coalesce into the DiSSCo (Distributed System of Systematics Collections) infrastructure, will the model established in SYNTHESYS+ continue to function in the absence of centralised funding? In this talk, we will explore the trajectory of access through SYNTHESYS and provide some scenarios for how access to natural history collections–both physical and virtual–may change as we transition to the broader infrastructure that DiSSCo represents.


2015 ◽  
Vol 42 (2) ◽  
pp. 197-210 ◽  
Author(s):  
Laurence M. Cook

Joseph Sidebotham (1824–1885) was a Manchester cotton baron whose natural history collections are now in the Manchester Museum. In addition to collecting he suggested a method for identifying and classifying Lepidoptera and investigated variation within species as well as species limits. With three close collaborators, he is credited with discovering many species new to Britain in both Lepidoptera and Coleoptera. A suspicion of fraud attaches to these claims. The evidence is not clear-cut in the Lepidoptera, but a possible reason is suggested why Sidebotham, as an amateur in the increasingly professional scientific world, might have engaged in deceit.


1981 ◽  
Vol 1981 (1) ◽  
pp. 61-70
Author(s):  
H. B. Carter ◽  
Judith A. Diment ◽  
C. J. Humphries ◽  
Alwyne Wheeler

2002 ◽  
Vol 29 (3) ◽  
pp. 333-336
Author(s):  
PIOTR DASZKIEWICZ ◽  
MICHEL JEGU

ABSTRACT: This paper discusses some correspondence between Robert Schomburgk (1804–1865) and Adolphe Brongniart (1801–1876). Four letters survive, containing information about the history of Schomburgk's collection of fishes and plants from British Guiana, and his herbarium specimens from Dominican Republic and southeast Asia. A study of these letters has enabled us to confirm that Schomburgk supplied the collection of fishes from Guiana now in the Laboratoire d'Ichtyologie, Muséum National d'Histoire Naturelle, Paris. The letters of the German naturalist are an interesting source of information concerning the practice of sale and exchange of natural history collections in the nineteenth century in return for honours.


2021 ◽  
Vol 10 (6) ◽  
pp. 1161
Author(s):  
Raluca Pais ◽  
Thomas Maurel

The epidemiology and the current burden of chronic liver disease are changing globally, with non-alcoholic fatty liver disease (NAFLD) becoming the most frequent cause of liver disease in close relationship with the global epidemics of obesity, type 2 diabetes and metabolic syndrome. The clinical phenotypes of NAFLD are very heterogeneous in relationship with multiple pathways involved in the disease progression. In the absence of a specific treatment for non-alcoholic steatohepatitis (NASH), it is important to understand the natural history of the disease, to identify and to optimize the control of factors that are involved in disease progression. In this paper we propose a critical analysis of factors that are involved in the progression of the liver damage and the occurrence of extra-hepatic complications (cardiovascular diseases, extra hepatic cancer) in patients with NAFLD. We also briefly discuss the impact of the heterogeneity of the clinical phenotype of NAFLD on the clinical practice globally and at the individual level.


Sign in / Sign up

Export Citation Format

Share Document