scholarly journals Assessing the relative importance of human and spatial pressures on non-native plant establishment in urban forests using citizen science

NeoBiota ◽  
2021 ◽  
Vol 65 ◽  
pp. 1-21
Author(s):  
Katherine Duchesneau ◽  
Lisa Derickx ◽  
Pedro M. Antunes

Since 2007, more people in the world live in urban than in rural areas. The development of urban areas has encroached into natural forest ecosystems, consequently increasing the ecological importance of parks and fragmented forest remnants. However, a major concern is that urban activities have rendered urban forests susceptible to non-native species incursions, making them central entry sites where non-native plant species can establish and spread. We have little understanding of what urban factors contribute to this process. Here we use data collected by citizen scientists to determine the differential impacts of spatial and urban factors on non-native plant introductions in urban forests. Using a model city, we mapped 18 urban forests within city limits, and identified all the native and non-native plants present at those sites. We then determined the relative contribution of spatial and socioeconomic variables on the richness and composition of native and non-native plant communities. We found that socioeconomic factors rather than spatial factors (e.g., urban forest area) were important modulators of overall or non-native species richness. Non-native species richness in urban forest fragments was primarily affected by residential layout, recent construction events, and nearby roads. This demonstrates that the proliferation of non-native species is inherent to urban activities and we propose that future studies replicate our approach in different cities to broaden our understanding of the spatial and social factors that modulate invasive species movement starting in urban areas.

2015 ◽  
Vol 40 (1) ◽  
pp. 112-134 ◽  
Author(s):  
Sébastien Larrue ◽  
Jean-François Butaud ◽  
Pascal Dumas ◽  
Stéphane Ballet

Which abiotic factors influence the number of native plant species on remote atolls is an important question to understand better the spatial pattern of the species observed on these low and vulnerable coral islands. However, this issue is still very poorly documented, often due to human degradation, partial botanical surveys or the difficult geographic access of remote atolls for researchers. The remote atolls of Eastern Polynesia, which are among the most isolated in the world, are of great interest for studies of native species’ distribution due to their isolation, low human density and urbanisation. In this study, we selected 49 remote atolls of Eastern Polynesia with complete botanical surveys to test the relative influence of eight abiotic factors on native plant species richness (i.e. indigenous and endemic species). Abiotic factors used as potential predictors included atoll area (km2), shoreline length (km), atoll elevation (m) and index of isolation (UNEP), but also the coastal index of the atoll ( Ic), the distance to the nearest similar atoll (km), the distance to the nearest large volcanic island ≥ 1000 km2 (here, Tahiti as a potential stepping-stone island) and the distance to the nearest raised atoll ≥ 15 m a.s.l. (here, Makatea or Henderson as a potential refugium during sea-level highstands). Spearman’s rank correlation, linear regression analysis and frequency diagrams were used to assess the relative influence of these factors on native species richness. No relationship was found between the species richness and the index of isolation or the distance to the nearest similar atoll. Atoll area and distance to the nearest raised atoll of Makatea explained 47.1% and 40%, respectively, of the native species richness variation observed on the remote atolls. The distance to the volcanic island of Tahiti and the coastal index explained 36.9% and 27.3% of the variation, while elevation and shoreline length explained 23.3% and 18.4% of the variation, respectively. Native species richness on the atolls surveyed increased with the increasing atoll area, elevation and shoreline length, but decreased with the increasing distance to the nearest raised atoll of Makatea and the large volcanic island of Tahiti. This supports the view that the spatial pattern of native species richness observed on the remote atolls was strongly influenced by (i) atoll area but also by (ii) the distance to the raised atoll of Makatea, and (iii) the distance to the volcanic island of Tahiti. This finding suggests that the raised atoll may be viewed as a refugium during sea-level highstands while the large volcanic island played the role of stepping-stone island, both islands influencing the dispersal of native species on remote atolls and attenuating the isolation effect in the study area.


2004 ◽  
Vol 52 (5) ◽  
pp. 597 ◽  
Author(s):  
J. B. Kirkpatrick

Few temporal studies document vegetation change in Australian temperate grassy woodlands. Floristic and structural data were collected from 68 randomly located sites in the Queens Domain, an urban grassy woodland remnant, in 1974, 1984, 1994 and 2000 and a search made for rare species. Species of conservation significance were concentrated at highly disturbed sites, whereas vegetation types of conservation significance decreased in area as a result of increases in the numbers of Allocasuarina verticillata, which caused a change in many unmown areas from Eucalyptus viminalis grassy woodland to E. viminalis–A. verticillata woodland/forest or A. verticillata open/closed forest. Structural changes were associated with changes in species composition and an increase in native-species richness. Increases in tree cover occurred where fires were most frequent, possibly as a result of the lack of mammalian herbivores. The frequencies of herbs and annual grasses were strongly affected by precipitation in the month of sampling. Half of the species that showed a consistent rise or fall through time were woody plants, approximately twice the number expected. In the dataset as a whole, species-richness variables were largely explained by varying combinations of variables related to moisture availability, altitude and the incidence of mowing. The strongest influences on species composition were the same, although slope and time since the last fire also contributed to multiple regression and generalised linear models. Compositional stability was positively related to native-species richness, whereas high levels of exotic-species richness occurred at both low and high levels of native-species richness. The maintenance of native-plant biodiversity on the Domain requires such counterintuitive measures as the maintenance of exotic trees and the control of native trees, demonstrating the contingencies of conservation management in fragmented vegetation that consists of a mixture of native and exotic species.


2016 ◽  
Vol 371 (1694) ◽  
pp. 20150273 ◽  
Author(s):  
Habacuc Flores-Moreno ◽  
Peter B. Reich ◽  
Eric M. Lind ◽  
Lauren L. Sullivan ◽  
Eric W. Seabloom ◽  
...  

Ecosystem eutrophication often increases domination by non-natives and causes displacement of native taxa. However, variation in environmental conditions may affect the outcome of interactions between native and non-native taxa in environments where nutrient supply is elevated. We examined the interactive effects of eutrophication, climate variability and climate average conditions on the success of native and non-native plant species using experimental nutrient manipulations replicated at 32 grassland sites on four continents. We hypothesized that effects of nutrient addition would be greatest where climate was stable and benign, owing to reduced niche partitioning. We found that the abundance of non-native species increased with nutrient addition independent of climate; however, nutrient addition increased non-native species richness and decreased native species richness, with these effects dampened in warmer or wetter sites. Eutrophication also altered the time scale in which grassland invasion responded to climate, decreasing the importance of long-term climate and increasing that of annual climate. Thus, climatic conditions mediate the responses of native and non-native flora to nutrient enrichment. Our results suggest that the negative effect of nutrient addition on native abundance is decoupled from its effect on richness, and reduces the time scale of the links between climate and compositional change.


1995 ◽  
Vol 43 (4) ◽  
pp. 349 ◽  
Author(s):  
SM Prober ◽  
KR Thiele

Before European settlement, grassy white box woodlands were the dominant vegetation in the east of the wheat-sheep belt of south-eastern Australia. Tree clearing, cultivation and pasture improvement have led to fragmentation of this once relatively continuous ecosystem, leaving a series of remnants which themselves have been modified by livestock grazing. Little-modified remnants are extremely rare. We examined and compared the effects of fragmentation and disturbance on the understorey flora of woodland remnants, through a survey of remnants of varying size, grazing history and tree clearing. In accordance with fragmentation theory, species richness generally increased with remnant size, and, for little-grazed remnants, smaller remnants were more vulnerable to weed invasion. Similarly, tree clearing and grazing encouraged weed invasion and reduced native species richness. Evidence for increased total species richness at intermediate grazing levels, as predicted by the intermediate disturbance hypothesis, was equivocal. Remnant quality was more severely affected by grazing than by remnant size. All little-grazed remnants had lower exotic species abundance and similar or higher native species richness than grazed remnants, despite their extremely small sizes (< 6 ha). Further, small, littlegrazed remnants maintained the general character of the pre-European woodland understorey, while grazing caused changes to the dominant species. Although generally small, the little-grazed remnants are the best representatives of the pre-European woodland understorey, and should be central to any conservation plan for the woodlands. Selected larger remnants are needed to complement these, however, to increase the total area of woodland conserved, and, because most little-grazed remnants are cleared, to represent the ecosystem in its original structural form. For the maintenance of native plant diversity and composition in little-grazed remnants, it is critical that livestock grazing continues to be excluded. For grazed remnants, maintenance of a site in its current state would allow continuation of past management, while restoration to a pre-European condition would require management directed towards weed removal, and could take advantage of the difference noted in the predominant life-cycle of native (perennial) versus exotic (annual or biennial) species.


2006 ◽  
Vol 15 (2) ◽  
pp. 271 ◽  
Author(s):  
Molly E. Hunter ◽  
Philip N. Omi ◽  
Erik J. Martinson ◽  
Geneva W. Chong

Establishment and spread of non-native species following wildfires can pose threats to long-term native plant recovery. Factors such as disturbance severity, resource availability, and propagule pressure may influence where non-native species establish in burned areas. In addition, pre- and post-fire management activities may influence the likelihood of non-native species establishment. In the present study we examine the establishment of non-native species after wildfires in relation to native species richness, fire severity, dominant native plant cover, resource availability, and pre- and post-fire management actions (fuel treatments and post-fire rehabilitation treatments). We used an information-theoretic approach to compare alternative hypotheses. We analysed post-fire effects at multiple scales at three wildfires in Colorado and New Mexico. For large and small spatial scales at all fires, fire severity was the most consistent predictor of non-native species cover. Non-native species cover was also correlated with high native species richness, low native dominant species cover, and high seeded grass cover. There was a positive, but non-significant, association of non-native species with fuel-treated areas at one wildfire. While there may be some potential for fuels treatments to promote non-native species establishment, wildfire and post-fire seeding treatments seem to have a larger impact on non-native species.


2019 ◽  
Vol 65 (3) ◽  
pp. 336-343 ◽  
Author(s):  
Donald P Chance ◽  
Johannah R McCollum ◽  
Garrett M Street ◽  
Bronson K Strickland ◽  
Marcus A Lashley

Abstract The biotic resistance hypothesis (BRH) was proposed to explain why intermediate disturbances lead to greater resistance to non-native invasions proposing communities that are more diverse provide greater resistance. However, several empirical data sets have rejected the BRH because native and non-native species richness often have a positive relation. We tested the BRH in a mature loblolly pine (Pinus taeda) forest with a gradient of disturbance intensities including canopy reduction, canopy reduction + fire, and canopy reduction + herbicide and fire. We analyzed data from the study using a combination of Pearson’s correlation and beta regressions. Using species richness, we too would reject BRH because of a positive correlation in species richness between native and non-native plants. However, native species abundance was greatest, and non-native species abundance was lowest following intermediate disturbances. Further, native and non-native species abundances were negatively correlated in a quadratic relation across disturbance intensities, suggesting that native species abundance, rather than richness, may be the mechanism of resistance to non-native invasions. We propose that native species abundance regulates resistance to non-native invasions and that intermediate disturbances provide the greatest resistance because they promote the greatest native species abundance.


Forests ◽  
2020 ◽  
Vol 11 (6) ◽  
pp. 630
Author(s):  
Peter Sang-Hoon Lee ◽  
Jincheol Park

The urban heat island effect has posed negative impacts on urban areas with increased cooling energy demand followed by an altered thermal environment. While unusually high temperature in urban areas has been often attributed to complex urban settings, the function of urban forests has been considered as an effective heat mitigation strategy. To investigate the cooling effect of urban forests and their influence range, this study examined the spatiotemporal changes in land surface temperature (LST) of urban forests and surrounding areas by using Landsat imageries. LST, the size of the urban forest, its vegetation cover, and Normalized Difference Vegetation Index (NDVI) were investigated for 34 urban forests and their surrounding areas at a series of buffer areas in Seoul, South Korea. The mean LST of urban forests was lower than that of the overall city, and the threshold distance from urban forests for cooling effect was estimated to be roughly up to 300 m. The group of large-sized urban forests showed significantly lower mean LST than that of small-sized urban forests. The group of urban forests with higher NDVI showed lower mean LST than that of urban forests with lower mean NDVI in a consistent manner. A negative linear relationship was found between the LST and size of urban forest (r = −0.36 to −0.58), size of vegetation cover (r = −0.39 to −0.61), and NDVI (r = −0.42 to −0.93). Temporal changes in NDVI were examined separately on a specific site, Seoul Forest, that has experienced urban forest dynamics. LST of the site decreased as NDVI improved by a land-use change from a barren racetrack to a city park. It was considered that NDVI could be a reliable factor for estimating the cooling effect of urban forest compared to the size of the urban forest and/or vegetation cover.


2010 ◽  
Vol 19 (4) ◽  
pp. 490 ◽  
Author(s):  
Erich K. Dodson ◽  
David W. Peterson ◽  
Richy J. Harrod

Slope stabilisation treatments like mulching and seeding are used to increase soil cover and reduce runoff and erosion following severe wildfires, but may also retard native vegetation recovery. We evaluated the effects of seeding and fertilisation on the cover and richness of native and exotic plants and on individual plant species following the 2004 Pot Peak wildfire in Washington State, USA. We applied four seeding and three fertilisation treatments to experimental plots at eight burned sites in spring 2005 and surveyed vegetation during the first two growing seasons after fire. Seeding significantly reduced native non-seeded species richness and cover by the second year. Fertilisation increased native plant cover in both years, but did not affect plant species richness. Seeding and fertilisation significantly increased exotic cover, especially when applied in combination. However, exotic cover and richness were low and treatment effects were greatest in the first year. Seeding suppressed several native plant species, especially disturbance-adapted forbs. Fertilisation, in contrast, favoured several native understorey plant species but reduced tree regeneration. Seeding, even with native species, appears to interfere with the natural recovery of native vegetation whereas fertilisation increases total plant cover, primarily by facilitating native vegetation recovery.


Sign in / Sign up

Export Citation Format

Share Document