scholarly journals Efficacy of liposomal dosage forms and hyperosmolar salines in experimental pharmacotherapy of acute lung injury

2019 ◽  
Vol 5 (2) ◽  
pp. 23-41
Author(s):  
Oleg A. Kulikov ◽  
Valentin P. Ageev ◽  
Elena E. Marochkina ◽  
Irina S. Dolgacheva ◽  
Olga V. Minayeva ◽  
...  

Introduction: Hypertonic sodium chloride solutions and liposomal drugs with pulmotropic effect are of great interest for the treatment of acute lung injury (ALI). The results of the studies on the efficacy of hypertonic solutions and liposomes in ALI treatment are currently controversial.Materials and methods: For the experiment, liposomes with dexamethasone, N-acetylcysteine (NAC), aprotinin and dye Cyanine-7 (Cy-7) were obtained. A liposome analysis was performed by means of spectrophotometry. ALI was modeled in rats by the administration of the damaging agents into the trachea. The experimental agents were injected once intravenously after the modeling of ALI. For experimental therapy used liposomal agents, 7.5% hypertonic saline (HS) and HyperHAES solutions in the respective groups. The efficacy of the therapy was assessed by the survival of animals, functional indicators of the cardiovascular and respiratory systems, and by the lung-body ratio. The biodistribution of liposomes after intravenous administration was investigated in mice through using a fluorescent dye Cy-7. The biodistribution of liposomes with Cy-7 was assessed using bioimaging according to the fluorescence intensity of internal organs (lungs, liver, and kidneys) and blood, expressed as dye concentration according to the calibration dependence of dye concentrarion on fluorescence intensity.Results and discussion: All the studied liposomal drugs were effective for the pharmacological correction of ALI. Hypertonic solutions, unlike liposomal drugs, were less likely to prevent the development of pulmonary edema. All the studied therapeutic agents increased the survival rate of the laboratory animals with ALI. The most effective experimental agent was liposomal dexamethasone. The use of drugs in form of simple liposomes with average diameter of 350 nm provided for a higher concentration of the drug in the lungs within the first 40 minutes after intravenous administration.Conclusion: Intravenous administration of liposomal forms is promising for the pharmacotherapy of acute lung injury.

1990 ◽  
Vol 258 (2) ◽  
pp. L1-L12 ◽  
Author(s):  
A. E. Warner ◽  
J. D. Brain

Pulmonary intravascular macrophages (PIMs) are an extensive population of mature phagocytic cells adherent to the pulmonary capillary endothelium in selected species. They are not prevalent in lungs of commonly studied laboratory animals, such as rodents, and thus have only been recently appreciated. However, their potential role in host defense and acute lung injury has attracted interest, since a number of studies have demonstrated pulmonary localization of circulating particles, microbes, and endotoxin by PIMs. Those animal species, such as ruminants, that provide useful models of pathogen (or endotoxin)-induced acute lung injury demonstrate rapid pulmonary uptake of bacteria by PIMs. Inflammatory mediators released by activated PIMs may initiate the process and provoke accumulation of neutrophils and platelets. This review summarizes the morphological characteristics of PIMs and their species distribution. The role of these members of the mononuclear phagocyte system, both beneficial and potentially pathogenic, is reviewed. The question of whether PIMs have a role in acute lung injury in humans is also discussed.


Author(s):  
Oleg A. Kulikov ◽  
Andrey V. Zaborovsky ◽  
Dina V. Yunina ◽  
Konstantin G. Gurevich ◽  
Larisa A. Tararina ◽  
...  

Objective. To investigate the possibility of pharmacological correction of acute lung injury of aspiration genesis with a liposomal form of dexamethasone in experiment. Materials and methods. For the experiment, simple liposomes were prepared from phosphatidylcholine and cholesterol with an average size of 320±50 nm and a dexamethasone concentration of 2.98±0.02 mg/ml. The study used outbred white rats, divided into four groups of 16 animals. 1st group Control (without experimental therapy), 2nd group - Experiment 1, where a solution of dexamethasone was injected intravenously at a dose of 6 mg/kg, 3rd group - Experiment 2, where an intravenous combination of dexamethasone solution (6 mg/kg) and hypertonic (7.5%) NaCl solution was administered once, and group 4 - Experiment 3, where liposomes with dexamethasone (6 mg/kg) were injected intravenously once in hypertensive (7.5%) NaCl solution. The main functional parameters of the animals (heart rate, blood pressure, saturation of hemoglobin with oxygen, partial pressure of blood oxygen and respiration rate) were subject to analysis. Functional parameters were analyzed before modeling acute lung injury and after 5 min, 1, 4, 24 hours, and 6 days. At the end of the experiment (day 6) the degree of pulmonary edema and histological signs of acute lung injury were assessed. Morphology was assessed quantitatively in each group. Results. The study found that liposomal dexamethasone in hypertonic NaCl solution, when administered intravenously, was more effective than aqueous dexamethasone solution in correcting functional impairment in acute lung injury. The combination of hypertonic sodium chloride solution with dexamethasone more markedly increases blood pressure and reduces the degree of pulmonary oedema. In acidine pepsin aspiration, liposomal dexamethasone in hypertonic NaCl solution most effectively increased animal survival. Conclusion. Compared with dexamethasone in hypertonic NaCl solution, liposomal dexamethasone is more effective in increasing animal survival and protecting lung tissue from aspiration damage by acidine pepsin.


2021 ◽  
Vol 21 (3) ◽  
pp. 75-80
Author(s):  
Andrey G. Aleksandrov

BACKGROUND: Among all groups of patients with virus-associated acute lung injury with influenza infection, the most severe course is observed in patients with immunosuppression. In this case, despite the studied mechanism of the course of combined pathology, the question of therapy in this group of patients remains unclear. AIM: To study the features of the course of acute lung injury in influenza infection with secondary immunosuppression in an experiment for the possibility of searching for experimental therapy for this combined pathology. MATERIALS AND METHODS: The study was performed on 115 outbred female mice. The mouse-adapted pandemic influenza virus A/California/7/09MA (H1N1)pdm09 was used for modeling viral acute lung injury. Experimental immunosuppression was reproduced by administration of methotrexate (1.25 mg/kg intraperitoneally, once every 3 days during 3 weeks before infection). During the experiment, mortality, blood oxygen saturation, the concentration of pro-inflammatory cytokines in the lungs, and the severity of lung injury were measured. RESULTS: The presence of experimental immunosuppression led to an exacerbation of acute lung injury in infected animals in terms of mortality and lung damage. Changes in the dynamics of proinflammatory cytokines (TNF-, IL-6, IL-1) in the lungs were observed during acute lung injury. Retarded recovery of the lungs functional activity was noted. CONCLUSIONS: The experimental immunosuppression contributed to the exacerbation of acute lung injury and to an increase in the duration of the pathology. These changes could be associated with an altered process of elimination of the pathogen. The reproduced model of combined pathology was used for searching a therapy for these complications.


Sign in / Sign up

Export Citation Format

Share Document