scholarly journals Description of a Cretaceous amber fossil putatively of the tribe Coprophilini (Coleoptera, Staphylinidae, Oxytelinae)

ZooKeys ◽  
2018 ◽  
Vol 782 ◽  
pp. 81-94
Author(s):  
György Makranczy ◽  
Shûhei Yamamoto ◽  
Michael S. Engel

An unusual and well-preserved fossil staphylinid is described and figured from a single specimen in Upper Cretaceous Burmese amber. Gollandiaplanatagen. et sp. n. is tentatively placed in the extant oxyteline tribe Coprophilini, although it lacks a few characteristic features of present-day members of the group, likely indicating it to be either a stem group of the tribe or prove to be distinct pending future discoveries. The discovery of this genus suggests that early oxytelines were more morphologically diverse during the Cretaceous and their evolutionary history was more complicated than previously documented. Tribal placement as regards fossil oxyteline taxa is discussed.

eLife ◽  
2019 ◽  
Vol 8 ◽  
Author(s):  
Yu-Lingzi Zhou ◽  
Adam Ślipiński ◽  
Dong Ren ◽  
Joseph Parker

Complex interspecies relationships are widespread among metazoans, but the evolutionary history of these lifestyles is poorly understood. We describe a fossil beetle in 99-million-year-old Burmese amber that we infer to have been a social impostor of the earliest-known ant colonies. Promyrmister kistneri gen. et sp. nov. belongs to the haeteriine clown beetles (Coleoptera: Histeridae), a major clade of ‘myrmecophiles’—specialized nest intruders with dramatic anatomical, chemical and behavioral adaptations for colony infiltration. Promyrmister reveals that myrmecophiles evolved close to the emergence of ant eusociality, in colonies of stem-group ants that predominate Burmese amber, or with cryptic crown-group ants that remain largely unknown at this time. The clown beetle-ant relationship has been maintained ever since by the beetles host-switching to numerous modern ant genera, ultimately diversifying into one of the largest radiations of symbiotic animals. We infer that obligate behavioral symbioses can evolve relatively rapidly, and be sustained over deep time.


Zootaxa ◽  
2019 ◽  
Vol 4674 (4) ◽  
pp. 482-490 ◽  
Author(s):  
HONGYU LI ◽  
BO WANG ◽  
XINGYUE LIU

The male of Cretaconiopteryx grandis Liu & Lu, 2017, which is the only representative species of the extinct dustywing subfamily Cretaconiopteryginae, is described for the first time from the Upper Cretaceous Burmese amber. The male genitalia, well preserved in the examined specimen, show a number of plesiomorphic characters, which support the sister group relationship between Coniopterygidae and the rest of extant lacewing families. 


PalZ ◽  
2021 ◽  
Author(s):  
Gideon T. Haug ◽  
Carolin Haug ◽  
Serita van der Wal ◽  
Patrick Müller ◽  
Joachim T. Haug

AbstractNymphidae, the group of split-footed lacewings, is a rather species-poor group. Split-footed lacewings nowadays are restricted to Australasia, while fossil forms are also known from other areas of the world, indicating that the group was more species-rich and therefore likely diverse in the past. Split-footed lacewings have rather distinct larvae, roughly resembling antlion larvae, but differing from the latter especially with regard to the mandibles. Antlion larvae usually have three prominent teeth on each mandible, while at least extant larvae of split-footed lacewings only have a single prominent tooth per mandible. Fossils interpreted as larvae of split-footed lacewings are well known from amber from Myanmar (ca. 100 myr; Burmese amber) and by a single specimen from Baltic amber (about 40 myr). We here report additional fossil specimens from Myanmar amber, expanding the known record of fossil forms from six depicted specimens to 15. For the extant fauna, we could compile 25 larvae. We compare the diversity of shape of extant and fossil larvae through time using an outline analysis (based on elliptic Fourier transformation) of the head. The results of this analysis indicate that the morphological diversity, or disparity, of split-footed lacewing larvae was higher in the past than it is today. With this type of analysis, we can show a loss of diversity over time, without the necessity to identify the fossil larvae down to a narrow taxonomical range. A similar pattern has already been recognised in silky lacewings, Psychopsidae. This might indicate a general loss of diversity of lacewing larvae.


2000 ◽  
Vol 74 (1) ◽  
pp. 1-6 ◽  
Author(s):  
Paul D. Taylor ◽  
Frank K. McKinney

The distinctive cheilostome bryozoan Stictostega durhami Shaw, 1967, from the Upper Campanian Ozan Formation of Arkansas, is redescribed and its relationships are reconsidered. Originally interpreted as a hippothoid ascophoran, the presence of a cryptocystal frontal shield and other characters suggest that it is a coilostegan anascan. Pores in the frontal shield are inferred to have served for the passage of parietal muscles (or their ligaments), which operated on the frontal membrane to raise hydrostatic pressure and protrude the lophophore in the same way as recently demonstrated in living Macropora. Stictostega is provisionally interpreted as a stem-group macroporid.


2013 ◽  
Vol 280 (1766) ◽  
pp. 20131200 ◽  
Author(s):  
Matt Friedman ◽  
Zerina Johanson ◽  
Richard C. Harrington ◽  
Thomas J. Near ◽  
Mark R. Graham

The adhesion disc of living remoras (Echeneoidea: Echeneidae) represents one of the most remarkable structural innovations within fishes. Although homology between the spinous dorsal fin of generalized acanthomorph fishes and the remora adhesion disc is widely accepted, the sequence of evolutionary—rather than developmental—transformations leading from one to the other has remained unclear. Here, we show that the early remora † Opisthomyzon (Echeneoidea: †Opisthomyzonidae), from the early Oligocene (Rupelian) of Switzerland, is a stem-group echeneid and provides unique insights into the evolutionary assembly of the unusual body plan characteristic of all living remoras. The adhesion disc of † Opisthomyzon retains ancestral features found in the spiny dorsal fins of remora outgroups, and corroborates developmental interpretations of the homology of individual skeletal components of the disc. † Opisthomyzon indicates that the adhesion disc originated in a postcranial position, and that other specializations (including the origin of pectination, subdivision of median fin spines into paired lamellae, increase in segment count and migration to a supracranial position) took place later in the evolutionary history of remoras. This phylogenetic sequence of transformation finds some parallels in the order of ontogenetic changes to the disc documented for living remoras.


Sign in / Sign up

Export Citation Format

Share Document