Experimental Study on Hydrodynamic Characteristics of Cavitating Flows around Hydrofoil under Different Water Temperatures

2014 ◽  
Vol 50 (8) ◽  
pp. 174 ◽  
Author(s):  
Suguo SHI
Author(s):  
T J Jemi Jeya ◽  
V Sriram ◽  
V Sundar

This paper presents the results from a comprehensive experimental study on the Quadrant Face Pile Supported Breakwater (QPSB) in two different water depths exposed to three different oblique wave attacks. The results are compared with that for a Vertical face Pile Supported Breakwater (VPSB) for identical test conditions. The paper compares the reflection coefficient, transmission coefficient, energy loss coefficient, non-dimensional pressure, and non-dimensional run-up as a function of the relative water depth and scattering parameter. The results obtained for QPSB are validated with existing results. The salient observations show that QPSB experiences better hydrodynamic performance characteristics than the VPSB under oblique waves.


2019 ◽  
Vol 18 (3) ◽  
pp. 701-709 ◽  
Author(s):  
Shengcong Liu ◽  
Chunwei Bi ◽  
Hui Yang ◽  
Liuyi Huang ◽  
Zhenlin Liang ◽  
...  

2021 ◽  
Vol 11 (22) ◽  
pp. 10708
Author(s):  
Adel Almoslh ◽  
Falah Alobaid ◽  
Christian Heinze ◽  
Bernd Epple

An experimental study was conducted in the sieve tray column to investigate the influence of gas flow rate on the hydrodynamic characteristics of the sieve tray, such as total tray pressure drop, wet tray pressure drop, dry tray pressure drop, clear liquid height, liquid holdup, and froth height. The hydrodynamic characteristics of the sieve tray were investigated for the gas/water system at different gas flow rates from 12 to 24 Nm3/h and at different pressures of 0.22, 0.24, and 0.26 MPa. In this study, a simulated waste gas was used that consisted of 30% CO2 and 70% air. The inlet volumetric flow rate of the water was 0.148 m3/h. The temperature of the inlet water was 19.5 °C. The results showed that the gas flow rate has a significant effect on the hydrodynamic characteristics of the tray. The authors investigated the effect of changing these hydrodynamic characteristics on the performance of a tray column used for CO2 capture.


Author(s):  
Lin Liu ◽  
Longfei Xiao ◽  
Zhiqiang Hu ◽  
Lijun Yang

In recent years, with the development of the deepwater oil and gas exploitation, the Spar platform has received more and more attention. A lot of research work has been done on the Spar platform, but experimental study on the process of wet tow and upending of Truss Spar is seldom conducted. Recently, a wet tow and upending model test of a Truss Spar was carried out in the State Key Laboratory of Ocean Engineering in Shanghai Jiao Tong University. The hydrodynamic characteristics and the global loads on the key points of the Truss Spar during the period of wet tow and upending are focused on. In the wet tow tests, the tow resistance, 6DOF motions, global loads and the relative wave elevations are measured and analyzed. During the upending simulation, the measuring parameters consist of the motions and the global moment at the connection points between the hard tank and the truss. The test program and test results are presented and discussed in this paper offering the value references for the wet tow and upending operation in reality of the Truss Spar.


Author(s):  
FenFang Zhao ◽  
Muk Chen Ong ◽  
Yanli Tang ◽  
Xinmeng Wang

Abstract Artificial reefs (ARs) are structures constructed on the seabed to attract and concentrate fish and to potentially improve and rehabilitate coastal ecosystems. In order to investigate the hydrodynamic characteristics of ARs, a series of model experiments of cubic artificial reefs are carried out in the flume. The model reefs are made of acrylic material with different shapes of opening and various open-area ratios. The hydrodynamic forces of the models are measured in the experiments. The changes of drag coefficient with respect to the open-area ratio and the flow-facing angle of attack are investigated and discussed respectively.


Sign in / Sign up

Export Citation Format

Share Document