Microstructure Evolution and Mechanical Properties of ART-Annealed Medium Manganese Steel (0.15C-5Mn-Al) Processed by Cold Rolling

2017 ◽  
Vol 53 (12) ◽  
pp. 133 ◽  
Author(s):  
Tianpeng ZHOU
2021 ◽  
Vol 1035 ◽  
pp. 404-409
Author(s):  
Zhe Rui Zhang ◽  
Ren Bo Song ◽  
Nai Peng Zhou ◽  
Wei Feng Huo

In this study, a new Fe-6Mn-4Al-0.4C high strength medium manganese hot rolled steel sheet was designed. The influence mechanism of the intercritical annealing (IA) temperature on microstructure evolution and mechanical properties of experimental steel were studied by SEM and XRD. The experimental steel was held for 30 minutes at 640°C, 680°C, 720°C, 760°C, 800°C, respectively. When the annealing temperature was 640°C, cementite particles precipitated between the austenite and ferrite phase boundary. As the annealing temperature increased, the cementite gradually dissolved and disappeared, the fraction of lamellar austenite increased significantly. When the annealing temperature is 800°C, the coarse equiaxed austenite and ferrite appeared. The yield strength (YS) decreased, the product of strength and elongation (PSE) and total elongation (TE) both increased first and then decreased, while the ultimate tensile strength (UTS) showed the opposite trend. The experimental steel exhibited excellent comprehensive mechanical properties after held at 760°C for 30 min. The UTS was 870 MPa, the YS was 703 MPa, and the TE was 77 %, the PSE was 67 GPa·%.


Metals ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 344 ◽  
Author(s):  
Simon Sevsek ◽  
Christian Haase ◽  
Wolfgang Bleck

The strain-rate-dependent deformation behavior of an intercritically annealed X6MnAl12-3 medium-manganese steel was analyzed with respect to the mechanical properties, activation of deformation-induced martensitic phase transformation, and strain localization behavior. Intercritical annealing at 675 °C for 2 h led to an ultrafine-grained multi-phase microstructure with 45% of mostly equiaxed, recrystallized austenite and 55% ferrite or recovered, lamellar martensite. In-situ digital image correlation methods during tensile tests revealed strain localization behavior during the discontinuous elastic-plastic transition, which was due to the localization of strain in the softer austenite in the early stages of plastic deformation. The dependence of the macroscopic mechanical properties on the strain rate is due to the strain-rate sensitivity of the microscopic deformation behavior. On the one hand, the deformation-induced phase transformation of austenite to martensite showed a clear strain-rate dependency and was partially suppressed at very low and very high strain rates. On the other hand, the strain-rate-dependent relative strength of ferrite and martensite compared to austenite influenced the strain partitioning during plastic deformation, and subsequently, the work-hardening rate. As a result, the tested X6MnAl12-3 medium-manganese steel showed a negative strain-rate sensitivity at very low to medium strain rates and a positive strain-rate sensitivity at medium to high strain rates.


Sign in / Sign up

Export Citation Format

Share Document