Microstructure Evolution and Mechanical Properties of 67GPa•% Grade Medium Manganese Steel

2021 ◽  
Vol 1035 ◽  
pp. 404-409
Author(s):  
Zhe Rui Zhang ◽  
Ren Bo Song ◽  
Nai Peng Zhou ◽  
Wei Feng Huo

In this study, a new Fe-6Mn-4Al-0.4C high strength medium manganese hot rolled steel sheet was designed. The influence mechanism of the intercritical annealing (IA) temperature on microstructure evolution and mechanical properties of experimental steel were studied by SEM and XRD. The experimental steel was held for 30 minutes at 640°C, 680°C, 720°C, 760°C, 800°C, respectively. When the annealing temperature was 640°C, cementite particles precipitated between the austenite and ferrite phase boundary. As the annealing temperature increased, the cementite gradually dissolved and disappeared, the fraction of lamellar austenite increased significantly. When the annealing temperature is 800°C, the coarse equiaxed austenite and ferrite appeared. The yield strength (YS) decreased, the product of strength and elongation (PSE) and total elongation (TE) both increased first and then decreased, while the ultimate tensile strength (UTS) showed the opposite trend. The experimental steel exhibited excellent comprehensive mechanical properties after held at 760°C for 30 min. The UTS was 870 MPa, the YS was 703 MPa, and the TE was 77 %, the PSE was 67 GPa·%.

1982 ◽  
Vol 68 (9) ◽  
pp. 1290-1296
Author(s):  
Isao TAKAHASHI ◽  
Nobuo AOYAGI ◽  
Shoichi TAKIZAWA ◽  
Masayoshi KUWAGATA ◽  
Minoru NISHIDA ◽  
...  

2021 ◽  
Vol 1016 ◽  
pp. 946-951
Author(s):  
Mateusz Morawiec ◽  
Adam Grajcar

The paper presents microstructural and mechanical results of medium manganese steel deformed under high strain rates. The rotary hammer tests at strain rates of 250, 500 and 1000 s-1 were applied. Mechanical properties under dynamic tensile loads were determined. According to the obtained results, when strain rate increased the yield point of the steel increased. An opposite trend was present regarding total elongation. In case of tensile strength, its level is similar for all analyzed deformation rates. The microstructure of the steel after the dynamic tensile test is composed of bainite, martensite and martensitic-austenitic islands. The strain-induced martensitic transformation was identified in microscopic investigations.


2016 ◽  
Vol 850 ◽  
pp. 659-663
Author(s):  
Xiao Gang Li ◽  
Ai Min Zhao ◽  
Hong Hong Zheng ◽  
Shao Heng Sun ◽  
Hong Xiang Yin

The microstructure and mechanical properties of a medium manganese quenching and partitioning (Q&P) steel for automobile were investigated by optical microscope (OM), scanning electron microscope (SEM), X-ray diffraction (XRD) and mechanical property test. The grain size and recovery degree were greatly affected by annealing temperature normally. The result shows that the medium manganese steel after quenching and partitioning (Q&P) heat treatment exhibited good mechanical properties. The maximum tensile strength and yield strength was 1280MPa and 1421MPa at 600°C, respectively. Additionally, the product of strength and plasticity could reached to 40472MPa×% at 640°C. Annealing temperature also had a great influence on the volume of retained austenite which increases linearly with the rise of annealing temperature as well.


2018 ◽  
Vol 941 ◽  
pp. 382-385
Author(s):  
Alexander Lange ◽  
Sarah Abraham ◽  
Rainer Fechte-Heinen ◽  
Nicholas Winzer ◽  
Andreas Kern

The recently developed CH-W® 800 hot-rolled steel is specifically developed for automotive chassis applications that require both high strength and outstanding formability. A completely ferritic microstructure allows hole expansion ratios of 90% and more, which indicates the remarkable formability of the material. The tensile strength of at least 800 MPa is mainly due to its very fine-grained microstructure as well as titanium carbide nanoprecipitates.


2016 ◽  
Vol 879 ◽  
pp. 2293-2299
Author(s):  
Ying Zou ◽  
Yun Bo Xu ◽  
Zhi Ping Hu ◽  
Xiao Long Yang ◽  
Xiao Dong Tan ◽  
...  

An intercritical annealing process was applied to a medium manganese steel plate (Fe-0.01C-5.3Mn-1.53Si) after the thermo-mechanical controlled processing (TMCP) and ultrafast cooling (UFC). The microstructures were observed by scanning electron microscopy (SEM) equipped with electron backscatter diffraction (EBSD), electron probe micro-analyzer (EPMA) and transmission electron microscopy (TEM). The retained austenite was measured by XRD and mechanical properties were measured by uniaxial tensile and impact tests. The influence of different annealing temperature was compared and the relationship between microstructures and mechanical properties was investigated. Results showed that the microstructures of the medium manganese steel plate were characterized by ultrafine grained lath-like ferrite and retained austenite and the excellent mechanical properties could be obtained at the annealing temperature of 640°C for 5 h. The volume fraction of the retained austenite reached up to 21%, which could significantly increase the elongation compared with the traditional steel plate. The mechanical property results revealed that the steel possessed adequate ultimate tensile strength of 865MPa and excellent impact energy of 121J (-20°C). The outstanding combination of strength and toughness indicates that the steel has a bright application prospect.


Sign in / Sign up

Export Citation Format

Share Document