scholarly journals Performance evaluation of alumina trihydrate and silica-filled silicone rubber composites for outdoor high-voltage insulations

2018 ◽  
Vol 26 (5) ◽  
pp. 2688-2700 ◽  
Author(s):  
Hidayatullah KHAN ◽  
Muhammad AMIN ◽  
Ayaz AHMAD
Author(s):  
Nurbahirah Norddin ◽  
Intan Mastura Saadon ◽  
Najwa Kamarudin ◽  
Norain Rahim ◽  
Jeefferie bin Abd Razak

<span>This paper is about preparation of silicone rubber (SiR) samples with different filler for high-voltage insulation purpose. The fillers used were silica from waste glass, calcium carbonate from cockle shell, silica/calcium carbonate and wollastonite. All the fillers were crushed into powder and undergo internal mixer and hot press as a material preparation. It was expected that the combination of filler with silicone rubber would give better result when experiencing ageing process. The direct current (DC) inclined plane test was used to investigate the tracking and erosion on silicone rubber composites. The tracking length was observed between the top and bottom electrode. Comparison would then be made between the silicone rubbers with different fillers based on the result obtained from the experiment.</span>


Polymers ◽  
2021 ◽  
Vol 13 (18) ◽  
pp. 3024
Author(s):  
M. Hassan Raza ◽  
Abraiz Khattak ◽  
Asghar Ali ◽  
Safi Ullah Butt ◽  
Bilal Iqbal ◽  
...  

Degradation of silicon rubber due to heat and humidity affect its performance in outdoor applications. To analyze the effects of high temperature and humidity on room temperature vulcanized (RTV) silicone rubber (SiR) and its composites, this study was performed. Five different sample compositions including neat silicone rubber (nSiR), microcomposites (15 wt% silica(SMC 15% SiO2) and 15 wt% ATH(SMC 15% ATH), nanocomposite (2.5 wt% silica(SNC 2.5% SiO2) and hybrid composite (10 wt% micro alumina trihydrate with 2 wt% nano silica(SMNC 10% ATH 2% SiO2) were prepared and subjected to 70 ˚C temperature and 80% relative humidity in an environmental chamber for 120 h. Contact angle, optical microscopy and Fourier transform infrared (FTIR) spectroscopy were employed to analyze the recovery properties before and after applying stresses. Different trends of degradation and recovery were observed for different concentrations of composites. Addition of fillers improved the overall performance of composites and SMC 15% ATH composite performed better than other composites. For high temperature and humidity, the ATH-based microcomposite was recommended over silica due to its superior thermal retardation properties of ATH. It has been proved that ATH filler is able to withstand high temperature and humidity.


Sign in / Sign up

Export Citation Format

Share Document