Investigating of Tool Wear, Tool Life and Surface Roughness When Machining of Nickel Alloy 242 with Using of Different Cutting Tools

2008 ◽  
Vol 1 (3) ◽  
pp. 222-230 ◽  
Author(s):  
H.H. Habeeb ◽  
K.A. Abou-El-Ho ◽  
Bashir Mohamad ◽  
Jahara A. Ghani ◽  
K. Kadirgama
2013 ◽  
Vol 465-466 ◽  
pp. 1098-1102 ◽  
Author(s):  
Noor Hakim Rafai ◽  
Mohd Amri Lajis ◽  
N.A.J. Hosni

This paper discussed the behavior of cutting tool in terms of tool wear, tool life and surface roughness when machining an AISI D2 hardened steel. An experimental test was conducted at different cutting speeds (Vc) and radial depth of cut (ae) using PVD TiAlN coated carbide tool under dry condition. Tool failure modes and tool wear mechanism for all cutting tools were examined at various cutting parameters. Flank wear was found to be the predominant tool failure for cutting tools. The highest volume material removal (VMR) attained was 3750 mm3 meanwhile the highest tool life (TL) was 9.69 min. The surface roughness (Ra) values from 0.09 to 0.24 μm can be attained in the workpiece with a high material removal. The relationship of tool wear performance and surface integrity was established to lead an optimum parameter in order to have high material removal, maximum tool life as well as acceptable surface finish.


Materials ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1628
Author(s):  
Mohd Fathullah Ghazali ◽  
Mohd Mustafa Al Bakri Abdullah ◽  
Shayfull Zamree Abd Rahim ◽  
Joanna Gondro ◽  
Paweł Pietrusiewicz ◽  
...  

This paper reports on the potential use of geopolymer in the drilling process, with respect to tool wear and surface roughness. The objectives of this research are to analyze the tool life of three different economy-grade drill bit uncoated; high-speed steel (HSS), HSS coated with TiN (HSS-TiN), and HSS-cobalt (HSS-Co) in the drilling of geopolymer and to investigate the effect of spindle speed towards the tool life and surface roughness. It was found that, based on the range of parameters set in this experiment, the spindle speed is directly proportional to the tool wear and inversely proportional to surface roughness. It was also observed that HSS-Co produced the lowest value of surface roughness compared to HSS-TiN and uncoated HSS and therefore is the most favorable tool to be used for drilling the material. For HSS, HSS coated with TiN, and HSS-Co, only the drilling with the spindle speed of 100 rpm was able to drill 15 holes without surpassing the maximum tool wear of 0.10 mm. HSS-Co exhibits the greatest tool life by showing the lowest value of flank wear and produce a better surface finish to the sample by a low value of surface roughness value (Ra). This finding explains that geopolymer is possible to be drilled, and therefore, ranges of cutting tools and parameters suggested can be a guideline for researchers and manufacturers to drill geopolymer for further applications.


2013 ◽  
Vol 315 ◽  
pp. 241-245 ◽  
Author(s):  
Ali Davoudinejad ◽  
M.Y. Noordin ◽  
Danial Ghodsiyeh ◽  
Sina Alizadeh Ashrafi ◽  
Mohsen Marani Barzani

Hard turning is a dominant machining operation performed on hardened materials using single-point cutting tools. In recent years, hard turning operation has become more and more capable with respect to various machinability criteria. This work deals with machinability of hardened DF-3 tool steel with 55 ±1 HRC hardness at various cutting conditions in terms of tool life, tool wear mechanism and surface roughness. Continuous dry turning tests were carried out using coated, mixed ceramic insert with honed edge geometry. Two different cutting speeds, 100 and 210 m/min, and feed rate values of 0.05, 0.125 and 0.2 mm/rev were used with a 0.2 mm constant depth of cut for all tests. Additionally scanning electron microscope (SEM) was employed to clarify the different types of wear. As far as tool life was concerned, best result was achieved at lowest cutting condition whereas surface roughness values decreased when operating at higher cutting speed and lower feed rate. Additionally maximum volume of material removed is obtained at low cutting speed and high feed rate. Dominant wear mechanism observed during the experiments were flank and crater wear which is mainly caused by abrasive action of the hard workpiece material with the ceramic cutting tools.


2021 ◽  
Vol 153 ◽  
pp. 106597 ◽  
Author(s):  
Chetan Agrawal ◽  
Jwalant Wadhwa ◽  
Anjali Pitroda ◽  
Catalin Iulian Pruncu ◽  
Murat Sarikaya ◽  
...  

Author(s):  
Shao-Hsien Chen ◽  
Chih-Hung Hsu

AbstractThe nickel alloy has good mechanical strength and corrosion resistance at high temperature; it is extensively used in aerospace and biomedical and energy industries, as well as alloy designs of different chemical compositions to achieve different mechanical properties. However, for high mechanical strength, low thermal conductivity, and surface hardening property, the nickel alloy has worse cutting tool life and machining efficiency than general materials. Therefore, how to select the optimum machining parameters will influence the workpiece quality, cost, and machining time. This research will be using a new experimental design methodology to the cutting parameter planning for nickel-based alloy cutting test, and used the uniform design methodology to cutting test to reduce the number of experiments. Three independent variable parameters are set up, including cutting speed, feed rate, and cutting depth, and four dependent variable parameters are set up, including cutting tool wear, surface roughness, machining time, and cutting force. A nickel alloy turning parameter model is built by using regression analysis to further predict the I/O relationship among various combinations of variables. The errors between actual values and prediction values are validated. When the cutting tool wear (VB) is 2.72~6.18%, the surface roughness (Ra) is 4.10~7.72%, the machining time (T) is 3.75~8.82%, and the cutting force (N) is 1.54~7.42%; the errors of various dependent variables are approximately less than 10%, so a high precision estimation model is obtained through a few experiments of uniform design method.


2021 ◽  
Author(s):  
Hüseyin Gürbüz ◽  
Şehmus Baday

Abstract Although Inconel 718 is an important material for modern aircraft and aerospace, it is a kind material, which is known to have low machinability. Especially, while these types of materials are machined, high cutting temperatures, BUE on cutting tool, high cutting forces and work hardening occur. Therefore, in recent years, instead of producing new cutting tools that can withstand these difficult conditions, cryogenic process, which is a heat treatment method to increase the wear resistance and hardness of the cutting tool, has been applied. In this experimental study, feed force, surface roughness, vibration, cutting tool wear, hardness and abrasive wear values that occurred as a result of milling of Inconel 718 material by means of cryogenically treated and untreated cutting tools were investigated. Three different cutting speeds (35-45-55 m/min) and three different feed rates (0.02-0.03-0.04 mm/tooth) at constant depth of cut (0.2 mm) were used as cutting parameters in the experiments. As a result of the experiments, lower feed forces, surface roughness, vibration and cutting tool wear were obtained with cryogenically treated cutting tools. As the feed rate and cutting speed were increased, it was seen that surface roughness, vibration and feed force values increased. At the end of the experiments, it was established that there was a significant relation between vibration and surface roughness. However, there appeared an inverse proportion between abrasive wear and hardness values. While BUE did not occur during cryogenically treated cutting tools, it was observed that BUE occurred in cutting tools which were not cryogenically treated.


2010 ◽  
Vol 33 ◽  
pp. 173-176
Author(s):  
X.Y. Wang ◽  
S.Q. Pang ◽  
Q.X. Yu

The aim of this work is to investigate the machinability of new coated carbide cutting tools that are named C7 plus coatings under turning of superalloy GH2132. This achieved by analysis of tool life at different cutting conditions .Investigations of tool wear and tool life testing are intended to establish T-V formulas, and then analyzed the characteristics of coating . Through a series of comparative tests, Using TiAlN coatings as the contrast materialthe results show that the new coating tools that are named C7 plus coatings are suitable for cutting superalloy GH2132. The cutting speed and processing efficiency can be increased effectively.


Sign in / Sign up

Export Citation Format

Share Document