scholarly journals Kinetic Assessment of Potential Toxic Elements Desorption from Contaminated Soil Ecosystems Irrigated with Low Quality Water

2016 ◽  
Vol 11 (3) ◽  
pp. 71-78 ◽  
Author(s):  
M. Saber ◽  
E. Hoballah ◽  
R. Ramadan ◽  
Soad El-Ashry ◽  
A.M. Zaghloul
2020 ◽  
Vol 44 (1) ◽  
Author(s):  
Hesham Mansour ◽  
Fikry Awad ◽  
Mohamed Saber ◽  
Alaa Zaghloul

Abstract Background and objective Soil is a substantive component in biosphere habitually endangered to superfluity contaminants particularly potential toxic elements (PTEs). The source of soil contaminants is very critical in controlling both their release and expected hazards in the different soil ecosystems. This study aims to investigate the effect of low-quality irrigation water (LQW) on the extent of soil pollution through desorption of zinc (Zn), nickel (Ni) and copper (Cu) from different polluted soils, collected from LQW irrigated farms for more than 40–80 years at Giza and Kafr-Elsheikh Governorates, Egypt. Results Models incorporated modified Freundlich (MFE), Elovich, first order and parabolic diffusion (PDE) showed significant results in describing the kinetic data under Egyptian conditions. Results entailed that according to the coefficient of determination (R2) and standard error, all used models well described the desorption of Cu, Ni and Zn, the most prevalent contaminants in the trailed soil ecosystems; for example, the R2 values were higher than 0.96** for zinc desorption using MFE model. As far as the PTEs levels are considered, the highest contaminant desorption rates were recorded at Kafr-Elsheikh site, followed by Kombora, and the lowest ones were in Abo Rawash soil ecosystem. The succession of more than one model to describe the kinetic perspective confirmed that the different mechanisms take place in PTEs sorption, distribution and subsequently release from different soil ecosystems. Conclusions The numerical values indicated that the soil ecosystems contaminated with industrial effluents were higher than those irrigated with sewage effluents regardless of the type of land use. More attention should be paid to low-quality water application in agriculture irrigation and its environmental risks.


Sci ◽  
2020 ◽  
Vol 2 (2) ◽  
pp. 46
Author(s):  
Guri Venvik ◽  
Floris C. Boogaard

Sustainable urban drainage systems (SuDS) such as swales are designed to collect, store and infiltrate a large amount of surface runoff water during heavy rainfall. Stormwater is known to transport pollutants, such as particle-bound Potential Toxic Elements (PTE), which are known to often accumulate in the topsoil. A portable XRF instrument (pXRF) is used to provide in situ spatial characterization of soil pollutants, specifically lead (Pb), zink (Zn) and copper (Cu). The method uses pXRF measurements of PTE along profiles with set intervals (1 meter) to cover the swale with cross-sections, across the inlet, the deepest point and the outlet. Soil samples are collected, and the In-Situ measurements are verified by the results from laboratory analyses. Stormwater is here shown to be the transporting media for the pollutants, so it is of importance to investigate areas most prone to flooding and infiltration. This quick scan method is time and cost-efficient, easy to execute and the results are comparable to any known (inter)national threshold criteria for polluted soils. The results are of great importance for all stakeholders in cities that are involved in climate adaptation and implementing green infrastructure in urban areas. However, too little is still known about the long-term functioning of the soil-based SuDS facilities.


Materials ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 6740
Author(s):  
Juan María Terrones-Saeta ◽  
Jorge Suárez-Macías ◽  
Antonio Bernardo-Sánchez ◽  
Laura Álvarez de Prado ◽  
Marta Menéndez Fernández ◽  
...  

Mining is an essential activity for obtaining materials necessary for the well-being and development of society. However, this activity produces important environmental impacts that must be controlled. More specifically, there are different soils near new or abandoned mining productions that have been contaminated with potentially toxic elements, and currently represent an important environmental problem. In this research, a contaminated soil from the mining district of Linares was studied for its use as a raw material for the conforming of ceramic materials, bricks, dedicated to construction. Firstly, the contaminated soil was chemically and physically characterized in order to evaluate its suitability. Subsequently, different families of samples were conformed with different percentages of clay and contaminated soil. Finally, the conformed ceramics were physically and mechanically characterized to examine the variation produced in the ceramic material by the incorporation of the contaminated soil. In addition, in this research, leachate tests were performed according to the TCLP method determining whether encapsulation of potentially toxic elements in the soil occurs. The results showed that all families of ceramic materials have acceptable physical properties, with a soil percentage of less than 80% being acceptable to obtain adequate mechanical properties and a maximum of 70% of contaminated soil to obtain acceptable leachate according to EPA regulations. Therefore, the maximum percentage of contaminated soil that can be incorporated into the ceramic material is 70% in order to comply with all standards. Consequently, this research not only avoids the contamination that contaminated soil can produce, but also valorizes this element as a raw material for new materials, avoiding the extraction of clay and reducing the environmental impact.


2021 ◽  
pp. 128131
Author(s):  
Muhammad Azeem ◽  
Sabry M. Shaheen ◽  
Amjad Ali ◽  
Parimala G.S.A. Jeyasundar ◽  
Abdul Latif ◽  
...  

2021 ◽  
Vol 121 ◽  
pp. 107038
Author(s):  
Michael Martínez-Colón ◽  
Henry Alegría ◽  
Ashley Huber ◽  
Hatice Kubra-Gul ◽  
Perihan Kurt-Karakus

Sign in / Sign up

Export Citation Format

Share Document