A Research Study: Using Data Mining in Knowledge Base Business Strategies

2006 ◽  
Vol 5 (3) ◽  
pp. 590-600 ◽  
Author(s):  
N. Girija ◽  
S.K. Srivatsa
Author(s):  
Suresh Solomon. G ◽  
Nancy Jasmine Goldina

In India there exists a lot of Rural areas in which the educational performance of the rural school students are inferior when compared it to the performance of the urban areas due to the lack of facilities, environment, income, employment opportunities and exposure. Equality is one among the basic principle of our country, so it’s a mere responsibility of any research study to perform a detailed analysis towards the performance of rural school students by focusing on to the factors to be monitored and improved so that the Rural areas also raise to the equilant level of competition with the Urban areas. For this goal Data mining plays a vital role in order to handle the data in proper way for analysis and prediction of performances for the improvement of rural school student’s education domain results. This paper presents a survey on Data Mining strategies used for prediction and performance analysis of rural school students education improvements. KEYWORDS—Data Mining, Rural, Urban, Prediction, Performance


2015 ◽  
Vol 118 (22) ◽  
pp. 37-42
Author(s):  
Khalid MehmoodIraqi ◽  
Huda Yasin ◽  
Mohsin Mohammad Yasin

Author(s):  
I. Aimufua ◽  
◽  
S Rakshit ◽  
N.R. Vajjhala ◽  
O.B. Longe

In recent years, the use of technology in almost every sector has been on the increase, which has lead to massive growth in the generation and usage of data. Medical, Business and other leading industries have surveyed and noted that data repositories will be a useful tool in the designing of business strategies, analyzing of unstructured and structure data in other to gain useful knowledge. Keywords: Early Childhood Development Analysis and Prediction Using Data Mining Classification Techniques


2019 ◽  
Vol 19 (1) ◽  
pp. 11-17
Author(s):  
Taek-Hyun Lee ◽  
◽  
Ho Kook Kwang

Author(s):  
Sujata Mulik

Agriculture sector in India is facing rigorous problem to maximize crop productivity. More than 60 percent of the crop still depends on climatic factors like rainfall, temperature, humidity. This paper discusses the use of various Data Mining applications in agriculture sector. Data Mining is used to solve various problems in agriculture sector. It can be used it to solve yield prediction.  The problem of yield prediction is a major problem that remains to be solved based on available data. Data mining techniques are the better choices for this purpose. Different Data Mining techniques are used and evaluated in agriculture for estimating the future year's crop production. In this paper we have focused on predicting crop yield productivity of kharif & Rabi Crops. 


2015 ◽  
Vol 1 (4) ◽  
pp. 270
Author(s):  
Muhammad Syukri Mustafa ◽  
I. Wayan Simpen

Penelitian ini dimaksudkan untuk melakukan prediksi terhadap kemungkian mahasiswa baru dapat menyelesaikan studi tepat waktu dengan menggunakan analisis data mining untuk menggali tumpukan histori data dengan menggunakan algoritma K-Nearest Neighbor (KNN). Aplikasi yang dihasilkan pada penelitian ini akan menggunakan berbagai atribut yang klasifikasikan dalam suatu data mining antara lain nilai ujian nasional (UN), asal sekolah/ daerah, jenis kelamin, pekerjaan dan penghasilan orang tua, jumlah bersaudara, dan lain-lain sehingga dengan menerapkan analysis KNN dapat dilakukan suatu prediksi berdasarkan kedekatan histori data yang ada dengan data yang baru, apakah mahasiswa tersebut berpeluang untuk menyelesaikan studi tepat waktu atau tidak. Dari hasil pengujian dengan menerapkan algoritma KNN dan menggunakan data sampel alumni tahun wisuda 2004 s.d. 2010 untuk kasus lama dan data alumni tahun wisuda 2011 untuk kasus baru diperoleh tingkat akurasi sebesar 83,36%.This research is intended to predict the possibility of new students time to complete studies using data mining analysis to explore the history stack data using K-Nearest Neighbor algorithm (KNN). Applications generated in this study will use a variety of attributes in a data mining classified among other Ujian Nasional scores (UN), the origin of the school / area, gender, occupation and income of parents, number of siblings, and others that by applying the analysis KNN can do a prediction based on historical proximity of existing data with new data, whether the student is likely to complete the study on time or not. From the test results by applying the KNN algorithm and uses sample data alumnus graduation year 2004 s.d 2010 for the case of a long and alumni data graduation year 2011 for new cases obtained accuracy rate of 83.36%.


2018 ◽  
Vol 6 (9) ◽  
pp. 572-574
Author(s):  
Gyaneshwar Mahto ◽  
Umesh Prasad ◽  
Rajiv Kumar Dwivedi
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document