scholarly journals Cross-linked chitosan-glyoxal/kaolin clay composite: Parametric optimization for color removal and COD reduction of remazol brilliant blue R dye

Author(s):  
Ali H. Jawad ◽  
Ahmed Saud Abdulhameed ◽  
Elmira Kashi ◽  
Zaher Mundher Yaseen ◽  
Zeid A. ALOthman ◽  
...  

Abstract Kaolin clay (KN) was employed as an inorganic filler to modify a cross-linked chitosan-glyoxal as Schiff’s-based chitosan composite derivative (CTS-GLY). The resulting (CTS-GLY/KN) was found to be a promising composite synthetic biopolymer that can be potentially utilized for color removal as well as COD reduction of an industrial anionic dye (remazol brilliant blue R, RBBR). The surface porosity, crystallinity, morphology, functionality, charge, and amine content of the CTS-GLY/KN were studied using BET, XRD, SEM, FTIR, pHpzc and pH-potentiometric titration analyses, respectively. Response surface methodology-Box-Behnken design (RSM-BBD) was used to optimize the impact of the main input factors on the color removal and COD reduction of RBBR. The adsorptive performance CTS-GLY/KN towards RBBR was well-defined by both Langmuir and Freundlich isotherm models with highest adsorption capacity of 447.1 mg/g at 30 ˚C. This finding reveals that CTS-GLY/KN can be utilized as a promising, feasible, and environmentally friendly composite-biosorbent for color removal and COD reduction of textile dyes from aqueous medium.

2020 ◽  
Vol 1 (1) ◽  
pp. 1-8
Author(s):  
J. Ndiritu ◽  
I W. Mwangi ◽  
J. I. Murungi ◽  
R. N. Wanjau

 Anthropogenic activities contribute large amounts of pollutants to the environment which threaten animal and human health. There is increased realization of the effect of these toxins on surface and ground water, consequently, their elimination is vital in rendering secure water for drinking as well as culpable release of effluents to our habitats. Phenolic compounds cause serious health effects to both humans and animals; a p-Nitrophenol concentration of 1 ppb changes the taste and odour of water as well as meat and fish quality. In humans, exposure to PNP causes eye and skin burns while its interaction with blood leads to confusion, cyanosis and unconsciousness. It is imperative therefore to find ways for removing PNP from water. Among the available techniques for removing PNP from water, adsorption is more convenient and offers more advantages because of its design, simplicity, and operating flexibility. The present study involved application of peels of raw Afromomum melegueta (RAM) and quaternised Afromomum melegueta (QAM) to remove PNP from water through adsorption. The raw adsorbents were modified with a quaternary ammonium salt to improve their uptake efficiency. The impact of experimental parameters; contact time, pH, sorbent dose, temperature and concentration were investigated. Attenuated FTIR technique was employed to characterize the adsorbent materials. It was established that the quaternary ammonium compound was anchored chemically within the cellulose structure of Afromomum melegueta peels. The behavior of adsorption of PNP was investigated using Langmuir and Freundlich isotherm models. The physical sorption load was 8.70 and 106.38 mg/g for RAM and QAM peels respectively from Langmuir adsorption equation. Uptake of PNP is high at the first 30 mins of contact and at sorbent dosage of 0.01 g and 0.03 g for RAM and QAM respectively. Quantity of PNP removed increases as the initial concentration rises however, adsorption decreases after a concentration exceeding 30 mg/L. The ideal pH and temperature for PNP removal is at pH 3 and 25 ˚C respectively. In conclusion, the findings suggest that Afromomum melegueta peels can be friendly to the environment, cheap biosorbents and efficient which can be applied for the uptake of PNP from drinking water


2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Dong-Hui Cheng ◽  
Sheng-Ke Yang ◽  
Yue Zhao ◽  
Jing Chen

Adsorption behaviors of oxytetracycline onto sediment in the Weihe River were described. The impact factors in the processes of adsorption, such as contact time, solution pH, temperature, and ionic strength, were determined by experiments. The experimental results were analyzed by kinetic and isotherm models. The adsorption kinetics was found to follow a pseudo-first-order model. The equilibrium adsorption data fitted well with the Langmuir and Freundlich isotherm models. However, the Langmuir isotherm was more suitable to describe the adsorption. Thermodynamics parameters such as Gibbs-free energy change (ΔG°), enthalpy change (ΔH°), and entropy change (ΔS°) were calculated. Results showed that the adsorption was feasible, spontaneous, entropy increasing, and endothermic in nature, which reached equilibrium in about 24 hours. The adsorption capacity did not cause obvious change at solution pH 4.0–7.0, and both decreased in solution pH 7.0–10.0 and 4.0–2.0. The presence of electrolytes such as NaCl in aqueous solution had a significant negative effect on the adsorption. The mechanisms controlling the adsorption were supposed to be chemisorption.


Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3054
Author(s):  
Huan Xu ◽  
Guilhem Boeuf ◽  
Zixian Jia ◽  
Kairuo Zhu ◽  
Mehrdad Nikravech ◽  
...  

In this study, ultraporous aluminas (UPA) were synthesized as new effective adsorbents for Remazol Brilliant Blue R (RBBR) removal from aqueous solutions. The UPA monoliths were grown via facile oxidation process, followed by isochronous annealing treatment in air at different temperatures, through which γ, θ, and α phase polycrystalline fibrous grains of UPA can be accordingly obtained. The experimental factors that affect the material adsorption performances including initial pH, contact time, and temperature were comprehensively studied by batch experiments. The RBBR adsorption isotherms of UPA(γ) and UPA(θ) powders were found almost identical, while UPA(α) powders showed low effectiveness. To obtain the desirable mechanical stability of the UPA monolith with considerable RBBR adsorption capacity, UPA(θ) powders were further studied. The UPA(θ) powders exhibited maximum RBBR adsorption at pH 2 due to the positively charged surface under acidic conditions. Compared with the Lagergren pseudo-first-order model, the pseudo-second-order model was found to explain the adsorption kinetics better. Despite the film diffusion dominating the adsorption process, the contributions of the intraparticle diffusion and chemical reactions were also found significant. The adsorption equilibrium data at different temperatures were fitted by the Langmuir, Freundlich, Temkin, and Dubinin–Radushkevich (D–R) isotherm models. The Langmuir model was found the most effective in the description of equilibrium data, and the maximum RBBR adsorption capacity retained by UPA(θ) powders was 122.55 mg·g−1 at 295 K. Thermodynamic parameters (ΔG0, ΔH0, and ΔS0) indicated the adsorption process was spontaneous and exothermic in nature.


2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Hizkeal Tsade Kara ◽  
Sisay Tadesse Anshebo ◽  
Fedlu Kedir Sabir ◽  
Getachew Adam Workineh

The study was focused on the preparation and characterizations of sodium periodate-modified nanocellulose (NaIO4-NC) prepared from Eichhornia crassipes for the removal of cationic methylene blue (MB) dye from wastewater (WW). A chemical method was used for the preparation of NaIO4-NC. The prepared NaIO4-NC adsorbent was characterized by using X-ray diffraction (XRD), Fourier transform infrared (FTIR), scanning electron microscope (SEM), energy-dispersive X-ray (EDX), and Brunauer–Emmett–Teller (BET) instruments. Next, it was tested to the adsorption of MB dye from WW using batch experiments. The adsorption process was performed using Langmuir and Freundlich isotherm models with maximum adsorption efficiency (qmax) of 90.91 mg·g−1 and percent color removal of 78.1% at optimum 30 mg·L−1, 60 min., 1 g, and 8 values of initial concentration, contact time, adsorbent dose, and solution pH, respectively. Pseudo-second-order (PSO) kinetic model was well fitted for the adsorption of MB dye through the chemisorption process. The adsorption process was spontaneous and feasible from the thermodynamic study because the Gibbs free energy value was negative. After adsorption, the decreased values for physicochemical parameters of WW were observed in addition to the color removal. From the regeneration study, it is possible to conclude that NaIO4-NC adsorbent was recyclable and reused as MB dye adsorption for 13 successive cycles without significant efficient loss.


2021 ◽  
Author(s):  
Adeel Mustafa ◽  
Nazia Yaqoob ◽  
Maheen Almas ◽  
Shagufta Kamal ◽  
Khalid Mahmood Zia ◽  
...  

Abstract In this study graphene oxide (GO) reinforced polyvinyl alcohol (PVA) composites hydrogels were synthesized and used as efficient adsorbents for Drimarene Brilliant Blue K-4BL. GO nanoparticles (NPs) were synthesized by modified Hummer’s method. The composites were characterized by Fourier transform infrared spectroscopy (FT-IR), Thermo-gravimetric analysis (TGA), Scanning electron microscopy (SEM) and X-ray diffraction (XRD). The results showed homogeneous dispersion of reinforcement in the synthesized composites. Moreover thermal stability of the composites was significantly enhanced by the addition of graphene oxide nanoparticles. The synthesized composites were used for the removal of Drimarene brilliant Blue from model waste water. The effect of pH, content of GONPs and initial concentration of Drimarene Brilliant Blue K-4BL on the adsorption capacity of synthesized GO/PVA composites were investigated. The equilibrium isothermal data were studied by applying Langmuir and Freundlich isotherm models. Results demonstrated that the adsorption process is well described by the Langmuir adsorption isotherm. According to the Langmuir model, maximum adsorption capacity i.e. 32mg/g was obtained at 0.7% GO/PVA composite. From the kinetic study it was concluded that pseudo-second-order model is the best fitted. Synthesized composites showed excellent reusability (almost 95 %) for the adsorption of Drimarene Brilliant Blue K-4BL after four successive cycles of adsorption and desorption. Thus, the GO/PVA composites demonstrated a great potential in terms of cost effectiveness, efficiency and reusability for the removal of Drimarene Brilliant Blue K-4BL dye.


REAKTOR ◽  
2019 ◽  
Vol 19 (3) ◽  
pp. 117-124
Author(s):  
Hargono Hargono ◽  
Angga Mei Sarah ◽  
Feninda Nevrita ◽  
Bakti Jos

The sorption of Cu (II) particle from aqueous solution onto chitosan and cross-connected chitosan-bentonite (CTS-BTN) as adsorbent were conducted in batch conditions. The impact of different test parameters: starting pH, sorption time was assessed. Equilibrium studies have been completed to decide the limit of chitosan and CTS-BTN for Cu (II) particle. The Langmuir and Freundlich isotherm models were used in the examination of the trial information as linearized conditions. It was discovered that the isotherm information were all around portrayed by the Langmuir isotherm. Chitosan and CTS-BTN showed an adsorption capacity of 125 mg/g and 142.86 mg/g, respectively. The constant of adsorption rate was investigation utilizing a pseudo first order and a pseudo second order model. The pseudo second order model brought about the best fit with test information (R2= 0,991 for CTS and R2= 0,995 for CTS-BTN), additionally giving a constant rate k2, ads= 8.85 x 10-5 g/mg min for CTS and 3.72 x 10-4 g/mg min for CTS-BTN. Recommending that this model could be used in design and applications.Keywords:  adsorption; Cu(II) ion; chitosan; cross-linked; isotherm; kinetics


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Mohd Azhar Ahmad ◽  
Safarudin Gazali Herawan ◽  
Ahmad Anas Yusof

The adsorption of remazol brilliant blue R (RBBR) dye on pinang frond based activated carbon (PF-AC) was investigated in a batch process. The effects of initial dye concentration, contact time, solution temperature, and solution pH were evaluated. The adsorption equilibrium and kinetic were found to follow Freundlich isotherm models and pseudo-second-order kinetic model, respectively. The mechanism of the adsorption process was found from the intraparticle diffusion model. Result from adsorption thermodynamic show that interaction for RBBR dye was found to be feasible, nonspontaneous, and endothermic. The results indicated that the PF-AC is very effective for the RBBR adsorption from aqueous solution.


Sign in / Sign up

Export Citation Format

Share Document