Current State and Use of Biological Adhesives in Orthopedic Surgery

Orthopedics ◽  
2014 ◽  
Vol 37 (3) ◽  
pp. 147-148 ◽  
Author(s):  
Ashish Anand ◽  
Neil V. Shah
Orthopedics ◽  
2013 ◽  
Vol 36 (12) ◽  
pp. 945-956 ◽  
Author(s):  
Neil V. Shah ◽  
Robert Meislin

Author(s):  
Fabio A. Casari ◽  
Nassir Navab ◽  
Laura A. Hruby ◽  
Philipp Kriechling ◽  
Ricardo Nakamura ◽  
...  

Abstract Purpose of Review Augmented reality (AR) is becoming increasingly popular in modern-day medicine. Computer-driven tools are progressively integrated into clinical and surgical procedures. The purpose of this review was to provide a comprehensive overview of the current technology and its challenges based on recent literature mainly focusing on clinical, cadaver, and innovative sawbone studies in the field of orthopedic surgery. The most relevant literature was selected according to clinical and innovational relevance and is summarized. Recent Findings Augmented reality applications in orthopedic surgery are increasingly reported. In this review, we summarize basic principles of AR including data preparation, visualization, and registration/tracking and present recently published clinical applications in the area of spine, osteotomies, arthroplasty, trauma, and orthopedic oncology. Higher accuracy in surgical execution, reduction of radiation exposure, and decreased surgery time are major findings presented in the literature. Summary In light of the tremendous progress of technological developments in modern-day medicine and emerging numbers of research groups working on the implementation of AR in routine clinical procedures, we expect the AR technology soon to be implemented as standard devices in orthopedic surgery.


2016 ◽  
Vol 46 (1) ◽  
pp. 101-104 ◽  
Author(s):  
Jarosław Witkowski ◽  
Witold Wnukiewicz ◽  
Paweł Reichert

2009 ◽  
Vol 2009 ◽  
pp. 1-12 ◽  
Author(s):  
M. T. Mathew ◽  
P. Srinivasa Pai ◽  
R. Pourzal ◽  
A. Fischer ◽  
M. A. Wimmer

Recently, “tribocorrosion,” a research area combining the science of tribology and corrosion, has drawn attention from scientists and engineers belonging to a wide spectrum of research domains. This is due to its practical impact on daily life and also the accompanying economical burdens. It encompasses numerous applications including the offshore, space, and biomedical industry, for instance, in the case of artificial joints (Total Hip Replacement, THR) in orthopedic surgery, where implant metals are constantly exposed to tribological events (joint articulations) in the presence of corrosive solutions, that is, body fluids. Keeping the importance of this upcoming area of research in biomedical applications in mind, it was thought to consolidate the work in this area with some fundamental aspects so that a comprehensive picture of the current state of knowledge can be depicted. Complexity of tribocorrosion processes has been highlighted, as it is influenced by several parameters (mechanical and corrosion) and also due to the lack of an integrated/efficient test system. Finally a review of the recent work in the area of biotribocorrosion is provided, by focusing on orthopedic surgery and dentistry.


Author(s):  
G.D. Danilatos

Over recent years a new type of electron microscope - the environmental scanning electron microscope (ESEM) - has been developed for the examination of specimen surfaces in the presence of gases. A detailed series of reports on the system has appeared elsewhere. A review summary of the current state and potential of the system is presented here.The gas composition, temperature and pressure can be varied in the specimen chamber of the ESEM. With air, the pressure can be up to one atmosphere (about 1000 mbar). Environments with fully saturated water vapor only at room temperature (20-30 mbar) can be easily maintained whilst liquid water or other solutions, together with uncoated specimens, can be imaged routinely during various applications.


Author(s):  
C. Barry Carter

This paper will review the current state of understanding of interface structure and highlight some of the future needs and problems which must be overcome. The study of this subject can be separated into three different topics: 1) the fundamental electron microscopy aspects, 2) material-specific features of the study and 3) the characteristics of the particular interfaces. The two topics which are relevant to most studies are the choice of imaging techniques and sample preparation. The techniques used to study interfaces in the TEM include high-resolution imaging, conventional diffraction-contrast imaging, and phase-contrast imaging (Fresnel fringe images, diffuse scattering). The material studied affects not only the characteristics of the interfaces (through changes in bonding, etc.) but also the method used for sample preparation which may in turn have a significant affect on the resulting image. Finally, the actual nature and geometry of the interface must be considered. For example, it has become increasingly clear that the plane of the interface is particularly important whenever at least one of the adjoining grains is crystalline.A particularly productive approach to the study of interfaces is to combine different imaging techniques as illustrated in the study of grain boundaries in alumina. In this case, the conventional imaging approach showed that most grain boundaries in ion-thinned samples are grooved at the grain boundary although the extent of this grooving clearly depends on the crystallography of the surface. The use of diffuse scattering (from amorphous regions) gives invaluable information here since it can be used to confirm directly that surface grooving does occur and that the grooves can fill with amorphous material during sample preparation (see Fig. 1). Extensive use of image simulation has shown that, although information concerning the interface can be obtained from Fresnel-fringe images, the introduction of artifacts through sample preparation cannot be lightly ignored. The Fresnel-fringe simulation has been carried out using a commercial multislice program (TEMPAS) which was intended for simulation of high-resolution images.


JAMA ◽  
1970 ◽  
Vol 213 (5) ◽  
pp. 816
Keyword(s):  

2005 ◽  
Vol 41 ◽  
pp. 205-218
Author(s):  
Constantine S. Mitsiades ◽  
Nicholas Mitsiades ◽  
Teru Hideshima ◽  
Paul G. Richardson ◽  
Kenneth C. Anderson

The ubiquitin–proteasome pathway is a principle intracellular mechanism for controlled protein degradation and has recently emerged as an attractive target for anticancer therapies, because of the pleiotropic cell-cycle regulators and modulators of apoptosis that are controlled by proteasome function. In this chapter, we review the current state of the field of proteasome inhibitors and their prototypic member, bortezomib, which was recently approved by the U.S. Food and Drug Administration for the treatment of advanced multiple myeloma. Particular emphasis is placed on the pre-clinical research data that became the basis for eventual clinical applications of proteasome inhibitors, an overview of the clinical development of this exciting drug class in multiple myeloma, and a appraisal of possible uses in other haematological malignancies, such non-Hodgkin's lymphomas.


1995 ◽  
Vol 38 (5) ◽  
pp. 1126-1142 ◽  
Author(s):  
Jeffrey W. Gilger

This paper is an introduction to behavioral genetics for researchers and practioners in language development and disorders. The specific aims are to illustrate some essential concepts and to show how behavioral genetic research can be applied to the language sciences. Past genetic research on language-related traits has tended to focus on simple etiology (i.e., the heritability or familiality of language skills). The current state of the art, however, suggests that great promise lies in addressing more complex questions through behavioral genetic paradigms. In terms of future goals it is suggested that: (a) more behavioral genetic work of all types should be done—including replications and expansions of preliminary studies already in print; (b) work should focus on fine-grained, theory-based phenotypes with research designs that can address complex questions in language development; and (c) work in this area should utilize a variety of samples and methods (e.g., twin and family samples, heritability and segregation analyses, linkage and association tests, etc.).


Sign in / Sign up

Export Citation Format

Share Document