scholarly journals Qualitative analysis of fractional relaxation equation and coupled system with Ψ-Caputo fractional derivative in Banach spaces

2021 ◽  
Vol 6 (3) ◽  
pp. 2486-2509
Author(s):  
Choukri Derbazi ◽  
◽  
Zidane Baitiche ◽  
Mohammed S. Abdo ◽  
Thabet Abdeljawad ◽  
...  

Author(s):  
Choukri Derbazi ◽  
Zidane Baitiche ◽  
Akbar Zada

Abstract This manuscript is committed to deal with the existence and uniqueness of positive solutions for fractional relaxation equation involving ψ-Caputo fractional derivative. The existence of solution is carried out with the help of Schauder’s fixed point theorem, while the uniqueness of the solution is obtained by applying the Banach contraction principle, along with Bielecki type norm. Moreover, two explicit monotone iterative sequences are constructed for the approximation of the extreme positive solutions to the proposed problem. Lastly, two examples are presented to support the obtained results.



Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-11 ◽  
Author(s):  
Manzoor Ahmad ◽  
Jiqiang Jiang ◽  
Akbar Zada ◽  
Syed Omar Shah ◽  
Jiafa Xu

In this paper, we study the existence and uniqueness of solutions to implicit the coupled fractional differential system with the Katugampola–Caputo fractional derivative. Different fixed-point theorems are used to acquire the required results. Moreover, we derive some sufficient conditions to guarantee that the solutions to our considered system are Hyers–Ulam stable. We also provided an example that explains our results.



Mathematics ◽  
2020 ◽  
Vol 8 (9) ◽  
pp. 1561 ◽  
Author(s):  
Yuri Luchko

In this paper, we first deduce the explicit formulas for the projector of the nth level fractional derivative and for its Laplace transform. Afterwards, the fractional relaxation equation with the nth level fractional derivative is discussed. It turns out that, under some conditions, the solutions to the initial-value problems for this equation are completely monotone functions that can be represented in form of the linear combinations of the Mittag–Leffler functions with some power law weights. Special attention is given to the case of the relaxation equation with the second level derivative.





Mathematics ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 979
Author(s):  
Sandeep Kumar ◽  
Rajesh K. Pandey ◽  
H. M. Srivastava ◽  
G. N. Singh

In this paper, we present a convergent collocation method with which to find the numerical solution of a generalized fractional integro-differential equation (GFIDE). The presented approach is based on the collocation method using Jacobi poly-fractonomials. The GFIDE is defined in terms of the B-operator introduced recently, and it reduces to Caputo fractional derivative and other fractional derivatives in special cases. The convergence and error analysis of the proposed method are also established. Linear and nonlinear cases of the considered GFIDEs are numerically solved and simulation results are presented to validate the theoretical results.



Entropy ◽  
2021 ◽  
Vol 23 (2) ◽  
pp. 211
Author(s):  
Garland Culbreth ◽  
Mauro Bologna ◽  
Bruce J. West ◽  
Paolo Grigolini

We study two forms of anomalous diffusion, one equivalent to replacing the ordinary time derivative of the standard diffusion equation with the Caputo fractional derivative, and the other equivalent to replacing the time independent diffusion coefficient of the standard diffusion equation with a monotonic time dependence. We discuss the joint use of these prescriptions, with a phenomenological method and a theoretical projection method, leading to two apparently different diffusion equations. We prove that the two diffusion equations are equivalent and design a time series that corresponds to the anomalous diffusion equation proposed. We discuss these results in the framework of the growing interest in fractional derivatives and the emergence of cognition in nature. We conclude that the Caputo fractional derivative is a signature of the connection between cognition and self-organization, a form of cognition emergence different from the other source of anomalous diffusion, which is closely related to quantum coherence. We propose a criterion to detect the action of self-organization even in the presence of significant quantum coherence. We argue that statistical analysis of data using diffusion entropy should help the analysis of physiological processes hosting both forms of deviation from ordinary scaling.



Mathematics ◽  
2021 ◽  
Vol 9 (16) ◽  
pp. 1866
Author(s):  
Mohamed Jleli ◽  
Bessem Samet ◽  
Calogero Vetro

Higher order fractional differential equations are important tools to deal with precise models of materials with hereditary and memory effects. Moreover, fractional differential inequalities are useful to establish the properties of solutions of different problems in biomathematics and flow phenomena. In the present work, we are concerned with the nonexistence of global solutions to a higher order fractional differential inequality with a nonlinearity involving Caputo fractional derivative. Namely, using nonlinear capacity estimates, we obtain sufficient conditions for which we have no global solutions. The a priori estimates of the structure of solutions are obtained by a precise analysis of the integral form of the inequality with appropriate choice of test function.



Axioms ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 130
Author(s):  
Suphawat Asawasamrit ◽  
Yasintorn Thadang ◽  
Sotiris K. Ntouyas ◽  
Jessada Tariboon

In the present article we study existence and uniqueness results for a new class of boundary value problems consisting by non-instantaneous impulses and Caputo fractional derivative of a function with respect to another function, supplemented with Riemann–Stieltjes fractional integral boundary conditions. The existence of a unique solution is obtained via Banach’s contraction mapping principle, while an existence result is established by using Leray–Schauder nonlinear alternative. Examples illustrating the main results are also constructed.



Sign in / Sign up

Export Citation Format

Share Document