scholarly journals Two-uniqueness of rational ghost soliton solution and well-posedness of perturbed Einstein-Yang-Mills equations

2021 ◽  
Vol 6 (11) ◽  
pp. 12065-12076
Author(s):  
Wenjing Song ◽  
◽  
Haiyun Deng ◽  
Ganshan Yang ◽  
◽  
...  

<abstract><p>In this paper, we discuss the uniqueness and existence of local solutions for the perturbed static, spherically symmetric Einstein-Yang-Mills (EYM) equations with gauge group $ SU(2) $. Moreover, we show that the rational expression solutions to the equations only happened in traditional Schwarzschild solutions and Reissner-Nordstrom solutions. From these results, we can infer that there is no rational ghost soliton solution for the EYM equations.</p></abstract>

1994 ◽  
Vol 09 (40) ◽  
pp. 3731-3739 ◽  
Author(s):  
GEORGE LAVRELASHVILI

We discuss the properties and interpretation of a discrete sequence of a static spherically symmetric solutions of the Yang-Mills dilaton theory. This sequence is parametrized by the number of zeros, n, of a component of the gauge field potential. It is demonstrated that solutions with odd n possess all the properties of the sphaleron. It is shown that there are normalizable fermion zero modes in the background of these solutions. The question of instability is critically analyzed.


2010 ◽  
Vol 25 (31) ◽  
pp. 5765-5785 ◽  
Author(s):  
GEORGE SAVVIDY

In the recently proposed generalization of the Yang–Mills theory, the group of gauge transformation gets essentially enlarged. This enlargement involves a mixture of the internal and space–time symmetries. The resulting group is an extension of the Poincaré group with infinitely many generators which carry internal and space–time indices. The matrix representations of the extended Poincaré generators are expressible in terms of Pauli–Lubanski vector in one case and in terms of its invariant derivative in another. In the later case the generators of the gauge group are transversal to the momentum and are projecting the non-Abelian tensor gauge fields into the transversal plane, keeping only their positively definite spacelike components.


1999 ◽  
Vol 14 (06) ◽  
pp. 447-457 ◽  
Author(s):  
JOSE A. MAGPANTAY

Using the recently proposed nonlinear gauge condition [Formula: see text] we show the area law behavior of the Wilson loop and the linear dependence of the instantaneous gluon propagator. The field configurations responsible for confinement are those in the nonlinear sector of the gauge-fixing condition (the linear sector being the Coulomb gauge). The nonlinear sector is actually composed of "Gribov horizons" on the parallel surfaces ∂ · Aa=fa≠0. In this sector, the gauge field [Formula: see text] can be expressed in terms of fa and a new vector field [Formula: see text]. The effective dynamics of fa suggests nonperturbative effects. This was confirmed by showing that all spherically symmetric (in 4-D Euclidean) fa(x) are classical solutions and averaging these solutions using a Gaussian distribution (thereby treating these fields as random) lead to confinement. In essence the confinement mechanism is not quantum mechanical in nature but simply a statistical treatment of classical spherically symmetric fields on the "horizons" of ∂ · Aa=fa(x) surfaces.


2020 ◽  
Vol 2020 (10) ◽  
Author(s):  
Masashi Hamanaka ◽  
Shan-Chi Huang

Abstract We study exact soliton solutions of anti-self-dual Yang-Mills equations for G = GL(2) in four-dimensional spaces with the Euclidean, Minkowski and Ultrahyperbolic signatures and construct special kinds of one-soliton solutions whose action density TrFμνFμν can be real-valued. These solitons are shown to be new type of domain walls in four dimension by explicit calculation of the real-valued action density. Our results are successful applications of the Darboux transformation developed by Nimmo, Gilson and Ohta. More surprisingly, integration of these action densities over the four-dimensional spaces are suggested to be not infinity but zero. Furthermore, whether gauge group G = U(2) can be realized on our solition solutions or not is also discussed on each real space.


Sign in / Sign up

Export Citation Format

Share Document