scholarly journals Some new Caputo fractional derivative inequalities for exponentially $ (\theta, h-m) $–convex functions

2021 ◽  
Vol 7 (2) ◽  
pp. 3006-3026
Author(s):  
Imran Abbas Baloch ◽  
◽  
Thabet Abdeljawad ◽  
Sidra Bibi ◽  
Aiman Mukheimer ◽  
...  

<abstract><p>Firstly, we obtain some inequalities of Hadamard type for exponentially $ (\theta, h-m) $–convex functions via Caputo $ k $–fractional derivatives. Secondly, using integral identity including the $ (n+1) $–order derivative of a given function via Caputo $ k $-fractional derivatives we prove some of its related results. Some new results are given and known results are recaptured as special cases from our results.</p></abstract>

Mathematics ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 979
Author(s):  
Sandeep Kumar ◽  
Rajesh K. Pandey ◽  
H. M. Srivastava ◽  
G. N. Singh

In this paper, we present a convergent collocation method with which to find the numerical solution of a generalized fractional integro-differential equation (GFIDE). The presented approach is based on the collocation method using Jacobi poly-fractonomials. The GFIDE is defined in terms of the B-operator introduced recently, and it reduces to Caputo fractional derivative and other fractional derivatives in special cases. The convergence and error analysis of the proposed method are also established. Linear and nonlinear cases of the considered GFIDEs are numerically solved and simulation results are presented to validate the theoretical results.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Xue Feng ◽  
Baolin Feng ◽  
Ghulam Farid ◽  
Sidra Bibi ◽  
Qi Xiaoyan ◽  
...  

In this paper, two versions of the Hadamard inequality are obtained by using Caputo fractional derivatives and stronglym-convex functions. The established results will provide refinements of well-known Caputo fractional derivative Hadamard inequalities form-convex and convex functions. Also, error estimations of Caputo fractional derivative Hadamard inequalities are proved and show that these are better than error estimations already existing in literature.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Yi-Xia Li ◽  
Muhammad Aamir Ali ◽  
Hüseyin Budak ◽  
Mujahid Abbas ◽  
Yu-Ming Chu

AbstractIn this paper, we offer a new quantum integral identity, the result is then used to obtain some new estimates of Hermite–Hadamard inequalities for quantum integrals. The results presented in this paper are generalizations of the comparable results in the literature on Hermite–Hadamard inequalities. Several inequalities, such as the midpoint-like integral inequality, the Simpson-like integral inequality, the averaged midpoint–trapezoid-like integral inequality, and the trapezoid-like integral inequality, are obtained as special cases of our main results.


Author(s):  
Masataka Fukunaga ◽  
Nobuyuki Shimizu ◽  
Hiroshi Nasuno

Nonlinear fractional calculus model for the viscoelastic material is examined for oscillation around the off-equilibrium point. The model equation consists of two terms of different order fractional derivatives. The lower order derivative characterizes the slow process, and the higher order derivative characterizes the process of rapid oscillation. The measured difference in the order of the fractional derivative of the material, that the order is higher when the material is rapidly oscillated than when it is slowly compressed, is partly attributed to the difference in the frequency dependence between the two fractional derivatives. However, it is found that there could be possibility for the variable coefficients of the two terms with the rate of change of displacement.


2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Huriye Kadakal

In this study, firstly we introduce a new concept called “strongly r-convex function.” After that we establish Hermite-Hadamard-like inequalities for this class of functions. Moreover, by using an integral identity together with some well known integral inequalities, we establish several new inequalities for n-times differentiable strongly r-convex functions. In special cases, the results obtained coincide with the well-known results in the literature.


2012 ◽  
Vol 16 (2) ◽  
pp. 385-394 ◽  
Author(s):  
V.D. Beibalaev ◽  
R.P. Meilanov

A finite difference approximation for the Caputo fractional derivative of the 4-?, 1 < ? ? 2 order has been developed. A difference schemes for solving the Dirihlet?s problem of the Poisson?s equation with fractional derivatives has been applied and solved. Both the stability of difference problem in its right-side part and the convergence have been proved. A numerical example was developed by applying both the Liebman and the Monte-Carlo methods.


2013 ◽  
Vol 16 (4) ◽  
Author(s):  
Danijela Rajter-Ćirić ◽  
Mirjana Stojanović

AbstractWe consider fractional derivatives of a Colombeau generalized stochastic process G defined on ℝn. We first introduce the Caputo fractional derivative of a one-dimensional Colombeau generalized stochastic process and then generalize the procedure to the Caputo partial fractional derivatives of a multidimensional Colombeau generalized stochastic process. To do so, the Colombeau generalized stochastic process G has to have a compact support. We prove that an arbitrary Caputo partial fractional derivative of a compactly supported Colombeau generalized stochastic process is a Colombeau generalized stochastic process itself, but not necessarily with a compact support.


Author(s):  
B. N. Narahari Achar ◽  
Carl F. Lorenzo ◽  
Tom T. Hartley

The importance of proper initialization in taking into account the history of a system whose time evolution is governed by a differential equation of fractional order, has been established by Lorenzo and Hartley, who also gave the method of properly incorporating the effect of the past (history) by means of an initialization function for the Riemann-Liouville and the Grunwald formulations of fractional calculus. The present work addresses this issue for the Caputo fractional derivative and cautions that the commonly held belief that the Caputo formulation of fractional derivatives properly accounts for the initialization effects is not generally true when applied to the solution of fractional differential equations.


Mathematics ◽  
2018 ◽  
Vol 6 (10) ◽  
pp. 193 ◽  
Author(s):  
Bessem Samet ◽  
Hassen Aydi

We are concerned with the class of functions f ∈ C 1 ( [ a , b ] ; R ) , a , b ∈ R , a < b , such that c D a α f is convex or c D b α f is convex, where 0 < α < 1 , c D a α f is the left-side Liouville–Caputo fractional derivative of order α of f and c D b α f is the right-side Liouville–Caputo fractional derivative of order α of f. Some extensions of Dragomir–Agarwal inequality to this class of functions are obtained. A parallel development is made for the class of functions f ∈ C 1 ( [ a , b ] ; R ) such that c D a α f is concave or c D b α f is concave. Next, an application to special means of real numbers is provided.


Fractals ◽  
2020 ◽  
Vol 28 (04) ◽  
pp. 2050070 ◽  
Author(s):  
CONG WU

In this paper, we work on a general comparison principle for Caputo fractional-order ordinary differential equations. A full result on maximal solutions to Caputo fractional-order systems is given by using continuation of solutions and a newly proven formula of Caputo fractional derivatives. Based on this result and the formula, we prove a general fractional comparison principle under very weak conditions, in which only the Caputo fractional derivative is involved. This work makes up deficiencies of existing results.


Sign in / Sign up

Export Citation Format

Share Document