Measurement of Fast Neutron Total Cross Sections on natTa and natBi at MeV Energy Range

2011 ◽  
Vol 59 (3) ◽  
pp. 2233-2236 ◽  
Author(s):  
Gi Dong Kim ◽  
Hyung Joo Woo ◽  
Tae Keun Yang ◽  
Sam Yoel Lee ◽  
Young Ook Lee
1994 ◽  
Vol 72 (3-4) ◽  
pp. 162-168
Author(s):  
R. Cabezas ◽  
J. Lubian

The neutron elastic, inelastic, and total cross sections in 56Fe are calculated in the energy range 1–5 MeV using the coupled-channel method and statistical Hauser–Feshbach theory. Reduced matrix elements for coupled-channel calculations were computed in the frame of the Davydov–Chaban model (DCM) including nonaxial hexadecapole modes. The DCM calculations are compared with those using the harmonic vibrational model and we prove that the first model is appropriate for this nucleus. Good agreement with experimental data is reached.


1966 ◽  
Vol 85 (1) ◽  
pp. 129-141 ◽  
Author(s):  
D.F. Measday ◽  
J.N. Palmieri

KnE Energy ◽  
2018 ◽  
Vol 3 (1) ◽  
pp. 21
Author(s):  
Yu Penionzhkevich ◽  
Yu Sobolev ◽  
V Samarin ◽  
M Naumenko

The paper presents the results of measurement of the total cross sections for reactions 4,6He + Si and 6,7,9Li + Si in the beam energy range 5−50 A⋅MeV. The enhancements of the total cross sections for reaction 6He + Si compared with reaction 4He + Si, and 9Li + Si compared with reactions 6,7Li + Si have been observed. The performed microscopic analysis of total cross sections for reactions 6He + Si and 9Li + Si based on numerical solution of the time-dependent Schrödinger equation for external neutrons of projectile nuclei 6He and 9Li yielded good agreement with experimental data.


2008 ◽  
Vol 23 (27n30) ◽  
pp. 2313-2316 ◽  
Author(s):  
◽  
H. KANDA ◽  
N. CHIGA ◽  
Y. FUJII ◽  
K. FUTATSUKAWA ◽  
...  

The total cross sections for the π+π− photoproduction on the deuteron were measured in an energy range of 0.8 to 1.1 GeV. The obtained total cross section for the quasi-free π+π− photoproduction on the deuteron was about 60 % of those on the free proton. The cross section for Δ++Δ− photoproduction was derived from the non-quasi-free π+π− photoproduction events. It was smaller than the previous data.


1979 ◽  
Vol 57 (1) ◽  
pp. 92-98 ◽  
Author(s):  
K. S. Puttaswamy ◽  
Ramakrishna Gowda ◽  
B. Sanjeevaiah

Total absorption cross sections in the elements C, Al, S, Cu, Zr, Ag, Sn, Ta, Au, and Pb for photons of energies 5.0, 5.9, 6.4, 8.1, 10.6, 14.4, 24.7, 32.9, 36.9, 66.6, and 129 keV are measured using a krypton-filled proportional counter in the energy range 5 to 25 keV and a thin NaI(Tl) detector in the energy range 30 to 130 keV. The measured total absorption cross sections are compared with those of Miller and Greening and McCrary, Plassman, Paekett, Conner, and Zimmermann. The scattering cross sections obtained by interpolation using the Atomic Data Tables are subtracted from the total cross sections to obtain the photoelectric cross sections and these are further compared with the recent theoretical values of Scofield.


2009 ◽  
Vol 64 (9-10) ◽  
pp. 665-670
Author(s):  
Xiao-Ming Tan ◽  
Chuan-Lu Yang ◽  
Mei-Shan Wang ◽  
Zhi-Hong Zhang

The total cross sections for electron scattering from He, Ne, Ar, Kr and Xe in the energy range from 100 eV to 10 000 eV have been calculated based on the optical-model potential. Our theoretical results are compared with the available experimental data. The consistency between them is also discussed. At higher energies (over 2000 eV for He, over 5000 eV for Ne, Ar, Kr and Xe), the total cross sections of electron scattering from these atoms are scarce, so our calculations will give a reference for further experimental and theoretical studies.


1997 ◽  
Vol 147 ◽  
pp. 25-61
Author(s):  
Hideo Tamura

AbstractWe prove the uniform boundedness of averaged total cross sections or of quantities related to scattering into cones in the semi-classical limit for scattering by two dimensional magnetic fields. We do not necessarily assume that the energy under consideration is in a non-trapping energy range in the sense of classical dynamics.


Sign in / Sign up

Export Citation Format

Share Document