Protein stabilized Au nanoclusters: spectral properties and photostability

2016 ◽  
Vol 56 (1) ◽  
Author(s):  
Vilius Poderys ◽  
Marija Matulionytė-Safinė ◽  
Dainius Rupšys ◽  
Ričardas Rotomskis

Bovine serum albumin stabilized gold nanoclusters (BSA-Au nanoclusters) have been widely studied due to their possible applications in biomedicine as sensors, fluorescent or multi-modality markers, and therapeutic agents. Synthesis and optical properties of these nanoclusters have been extensively investigated; however, there is still very little data on photostability of BSA-Au nanoclusters. Photostability of BSA-Au nanoclusters is of major importance for a variety of applications, such as material sensing and fluorescence imaging. Herein we demonstrate that after synthesis the BSA-Au solution has two photoluminescence (PL) bands peaking at 468 and 660 nm. Nevertheless, a different behaviour of the PL bands at 468 and 660 nm upon irradiation indicates that only band at 660 nm is related to PL of Au nanoclusters. BSA-Au nanoclusters exhibit great colloidal stability and do not undergo irreversible changes when heated up to 65 °C. However, irradiation of BSA-Au nanoclusters causes a wavelength dependent decrease of intensity and a hypsochromic shift of the PL band at 660 nm which is proportional to the delivered dose. The shift of the PL band at 660 nm could occur due to loss of several gold atoms in Au nanoclusters and/or due to deterioration of a nanoparticle coating layer. We have also demonstrated that the photostability of BSA-Au nanoclusters increases in the cell growth medium.

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Anna Jancik Prochazkova ◽  
Markus Clark Scharber ◽  
Cigdem Yumusak ◽  
Ján Jančík ◽  
Jiří Másilko ◽  
...  

Abstract This work reports on an optimized procedure to synthesize methylammonium bromide perovskite nanoparticles. The ligand-assisted precipitation synthetic pathway for preparing nanoparticles is a cost-effective and promising method due to its ease of scalability, affordable equipment requirements and convenient operational temperatures. Nevertheless, there are several parameters that influence the resulting optical properties of the final nanomaterials. Here, the influence of the choice of solvent system, capping agents, temperature during precipitation and ratios of precursor chemicals is described, among other factors. Moreover, the colloidal stability and stability of the precursor solution is studied. All of the above-mentioned parameters were observed to strongly affect the resulting optical properties of the colloidal solutions. Various solvents, dispersion media, and selection of capping agents affected the formation of the perovskite structure, and thus qualitative and quantitative optimization of the synthetic procedure conditions resulted in nanoparticles of different dimensions and optical properties. The emission maxima of the nanoparticles were in the 508–519 nm range due to quantum confinement, as confirmed by transmission electron microscopy. This detailed study allows the selection of the best optimal conditions when using the ligand-assisted precipitation method as a powerful tool to fine-tune nanostructured perovskite features targeted for specific applications.


2019 ◽  
Vol 21 (43) ◽  
pp. 23916-23921 ◽  
Author(s):  
Martina Perić ◽  
Željka Sanader Maršić ◽  
Isabelle Russier-Antoine ◽  
Hussein Fakhouri ◽  
Franck Bertorelle ◽  
...  

The effects of explicit ligands and of aqueous solvent on optical properties and in particular on the one- and two-photon excitation fluorescence of zwitterion functionalized gold nanoclusters have been studied.


2020 ◽  
Vol 56 (42) ◽  
pp. 5580-5583 ◽  
Author(s):  
Wenjing Li ◽  
Xi Wang ◽  
Tao Jiang ◽  
Xiang Ma ◽  
He Tian

β-Cyclodextrin modified gold nanoclusters with near-infrared emission were facilely and successfully prepared based on a one-pot and green supramolecular macrocycle modification strategy.


Sign in / Sign up

Export Citation Format

Share Document