precursor method
Recently Published Documents


TOTAL DOCUMENTS

644
(FIVE YEARS 52)

H-INDEX

47
(FIVE YEARS 5)

2022 ◽  
Vol 924 (2) ◽  
pp. 59
Author(s):  
J. Y. Lu ◽  
Y. T. Xiong ◽  
K. Zhao ◽  
M. Wang ◽  
J. Y. Li ◽  
...  

Abstract In this paper, a novel bimodal model to predict a complete sunspot cycle based on comprehensive precursor information is proposed. We compare the traditional 13 month moving average with the Gaussian filter and find that the latter has less missing information and can better describe the overall trend of the raw data. Unlike the previous models that usually only use one precursor, here we combine the implicit and geometric information of the solar cycle (peak and skewness of the previous cycle and start value of the predicted cycle) with the traditional precursor method based on the geomagnetic index and adopt a multivariate linear approach with a higher goodness of fit (>0.85) in the fitting. Verifications for cycles 22–24 demonstrate that the model has good performance in predicting the peak and peak occurrence time. It also successfully predicts the complete bimodal structure for cycle 22 and cycle 24, showing a certain ability to predict whether the next solar cycle is unimodal or bimodal. It shows that cycle 25 is a single-peak structure and that the peak will come in 2024 October with a peak of 145.3.


Author(s):  
Arda Aytimur ◽  
Serhat Koçyiğit ◽  
Ibrahim Uslu

Neodymium, gadolinium, and praseodymium doped barium-iron oxide ceramic materials were synthesized by polymeric precursor method. No carbon contents or the moisture was observed in infrared spectra of the ceramics. Neodymium and gadolinium doped ceramics were crystallized in cubic lattice form, while praseodymium doped ceramic was formed in hexagonal lattice. Same results were observed from SEM images, Neodymium and gadolinium doped ceramics had similar morphological structures, but praseodymium doped ceramics had slightly different morphology. Neodymium and gadolinium doped ceramics consisted of grain-like structure, while praseodymium doped ceramic material consisted of both grain-like and pillar-like crystal structures.


Magnetism ◽  
2021 ◽  
Vol 1 (1) ◽  
pp. 22-36
Author(s):  
Ahmed Maher Henaish ◽  
Maha Mostafa ◽  
Ilya Weinstein ◽  
Osama Hemeda ◽  
Basant Salem

Ferroelectric samples Sr1−xBaxTiO3 (BST), where x = 0, 0.2, 0.4, 0.6, 0.8 and 1, were prepared using the tartrate precursor method and annealed at 1200 °C for 2 h. X-ray diffraction, “XRD”, pattern analysis verified the structure phase. The crystallite size of the SrTiO3 phase was calculated to be 83.6 nm, and for the TiO2 phase it was 72.25 nm. The TEM images showed that the crystallites were agglomerated, due to their nanosize nature. The AC resistivity was measured as temperature dependence with different frequencies 1 kHz and 10 kHz. The resistivity was decreased by raising the frequency. The dielectric properties were measured as the temperature dependence at two frequencies, 1 kHz and 10 kHz. The maximum amount of dielectric constant corresponded to the Curie temperature and the transformation from ferroelectric to paraelectric at 1 kHz was sharp at 10 kHz. Polarization–electric field hysteresis loops for BST samples were measured using a Sawer–Tawer modified circuit. It was shown that the polarization decreased with increasing temperature for all samples.


Author(s):  
Gislayne Rayane Alves da Silva ◽  
Claudia Patrícia Fernandez Perdomo ◽  
Rodolfo Foster Klein Gunnewiek ◽  
Ruth Herta Goldschmidt Aliaga Kiminami

Cerâmica ◽  
2021 ◽  
Vol 67 (383) ◽  
pp. 327-332
Author(s):  
M. S. L. Trindade ◽  
T. S. Silva ◽  
W. L. R. Pires ◽  
T. J. Castro

Sign in / Sign up

Export Citation Format

Share Document